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Abstract 

Pluripotency-associated transcription factors (PATF) play significant roles during early embryogenesis and in 

embryonic stem (ES) cells, such as control of cell-cycle progression, modulation of cellular metabolism, and 

transcriptional control of differentiation-inducing factors. The review aims to describe the current 

understanding of how these PATFs contribute to the early embryo and the ES-cell phenotypes. By a selection 

of representative examples of such PATFs, their roles are described, and some interesting questions are 

presented concerning their activity in pluripotent cells which have yet to be addressed. 

Keywords: embryology; pluripotent; preimplantation development; totipotency. 

 

Resumo 

Fatores de transcrição relacionados à pluripotência (FTRP) apresentam importantes funções durante a 

embriogênese inicial e em células-tronco embrionárias (CTE), como o controle da progressão do ciclo celular, 

modulação do metabolismo celular e controle transcricional de fatores indutores de diferenciação celular. O 

objetivo da revisão foi descrever o conhecimento vigente sobre como estes FTRPs contribuem para o fenótipo 

dos embriões e CTEs. Através da seleção de exemplos representativos destes FTRPs, suas funções são descritas 

e algumas perguntas interessantes são apresentadas considerando suas atividades em células pluripotentes, mas 

que ainda não foram devidamente respondidas. 

Palavras-Chave: embriologia; pluripotente; desenvolvimento pré-implantacional; totipotência. 

 

Introduction  

Early embryogenesis in mammals can be 

defined as the period of development before 

implantation (Rossant, 2007; Cockburn and 

Rossant, 2010; Wu et al., 2017). After the process 

of fertilization and egg activation, DNA replication 

is initiated in both haploid genomes, followed by 

syngamy of pro-nuclei and the first mitotic 

division, thus forming the two-cell stage embryo 

(Rossant, 2007; Wu et al., 2017). Moreover, the 

embryo goes through several rounds of cell 

divisions, denominated cleavages, that ultimately 

lead to a progressive reduction in blastomere 

volume (Figure 1). During this period of embryonic 

development, blastomeres remain relatively similar 

in shape, and have limited adhesion among them. 

There is no transcription in the early embryo and 

its developmental coordination and timing are 

determined by maternal factors found in the egg 

(Latham, 1999; Wu et al., 2017). Therefore, such 

cleavage divisions are rather fast in timing, with 

short G1 and G2 phases during the cell cycle 

(Frankenberg et al., 2016; Wu et al., 2017). 

After a variable number of cell divisions 

(i.e., 2-cell stage in mice, 8-16 cell transition in 
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ruminants), embryos go through the embryonic 

genome activation (EGA) (Memili and First, 

2000). EGA activates the genes of the embryo that 

progressively dominate the transcriptional output 

of embryonic cells (Latham, 1999; Wu et al., 

2017). When the EGA is concluded, the embryo 

faces a period of compactation (Frankenberg et al., 

2016). At this stage, outer cells carry out a 

morphological change and acquire an epithelial-

like morphology, in contrast to the spherical shape 

of inner cells in the embryo (Cockburn and 

Rossant, 2010; Wu et al., 2017). This difference in 

blastomere morphology becomes more evident at 

the morula stage (Figure 1), alongside with 

transcriptional variations are observed in these two 

different cell types (Rossant, 2016; Wu et al., 

2017). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Developmental potential of early embryos and embryonic stem cells. Totipotency is limited to early cleavage-stage embryos 

before embryonic genome activation (EGA) (dark green). After blastocyst formation, the inner cell mass (ICM) progressively 

exits pluripotency toward the three embryonic germ layers (light green). Trophectoderm cells (TC) gradually differentiates 

into placenta-forming cell types (Orange). Alternatively, a stable pluripotency state is captured by establishment and 

propagation of ICM-derived embryonic stem (ES) cells. 

 

At a discrete portion of the embryo, liquid 

begins to accumulate, leading to blastocele 

formation. The expansion of the blastocele occurs 

in parallel to the process of cellular differentiation 

that is culminated at the blastocyst stage (Figure 1), 

with the segregation between the inner cell mass 

and trophectoderm (Rossant, 2007; Wu et al., 

2017). There are significant differences in embryo 

morphology among mammalian species 

(Frankenberg et al., 2016), although their 

functional properties remain similar.   

The process of cellular differentiation that 

was initiated during the compactation period is 

closed with the formation of the blastocyst 

(Cockburn and Rossant, 2010; Wu et al., 2017). 

The outer cells of the blastocyst make the 

trophectoderm, thus carrying an epithelial-like 

morphology and give the three-dimensional 

structure of the blastocyst. The inner cell mass 

(ICM) is composed of round cells aggregated in a 

three-dimensional structure and adhered to the 

trophectoderm. More importantly, these 

morphological changes are accompanied by 

contrasting functional and developmental potency 

abilities (Wu et al., 2017). The trophectoderm gives 

rise to all cell types that make up the placenta, 

while the ICM has the potential to form all cell 

types that make up the fetus (Cockburn and 

Rossant, 2010; Rossant, 2016).  

 

Totipotency 

The tremendous developmental capacity of 

early embryos has been the focus of intense 

experimentation since the XIX century (Tagarelli 

et al., 2004). Initial studies relied on amphibian 

embryos, which are relatively large, easy to culture 

in simple solutions, have considerable size 

compared to their mammalian counterparts, and are 

more resistant to experimental manipulation 

(Gurdon, 2006). The mechanical isolation of two 

blastomeres in a frog embryo resulted in the 

formation of two tadpoles, thus proving that such 

cells retain the capacity to give rise to the whole 

organism (Tagarelli et al., 2004). Similar 

experiments were carried out with mammalian 

embryos up to the eight-cell stage (Moore, 1968; 

Willadsen, 1981), leading to the understanding that 

this developmental potency, denominated 
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totipotency, is also retained in such embryos. Thus, 

totipotency is defined as the capacity to derive all 

cell types that make up the fetus and the placenta 

(Rossant, 2016). Remarkably, no cell type retains 

the totipotency state after the EGA. 

 

Pluripotency 

The pluripotent state is defined as the 

capacity of a cell to differentiate into all tissues of 

the three germ layers, namely endoderm, 

mesoderm, and ectoderm. Pluripotent cells display 

high nuclear to cytoplasm ratio, multiple nucleoli, 

relatively short cell cycles, among other distinctive 

features (Smith, 2001). The ICM differentiates into 

the epiblast and hypoblast, that will form the fetus 

and amniotic sac, respectively (Cockburn and 

Rossant, 2010; Rossant, 2016). The epiblast cells 

also give rise to primordial germ cells (PGC) 

(McLaren, 2000), that migrate to gonadal ridges 

and form the germ cells lineages (Barton et al., 

2016). 

The introduction of ICM pluripotent cells 

into recipient embryos demonstrates that these cells 

contribute to the formation of mots, if not all, 

tissues in the fetus (Nagy et al., 1990; Picard et al., 

1990). By using modified embryos that 

progressively contribute exclusively to placenta 

formation, the introduction of pluripotent cells 

allows the formation of viable fetuses (Nagy et al., 

1990). 

The isolation and in vitro culture of the ICM 

under defined conditions allow the establishment 

of cultures of pluripotent cells coined as embryonic 

stem (ES) cells (Evans and Kaufman, 1981; Smith, 

2001; Buehr et al., 2008; Li et al., 2008). These ES 

cells maintain a typical morphology and can be 

propagated indefinitely in culture (Smith, 2001; 

Moura, 2012). When exposed to differentiation-

inducing factors, such as growth factors and 

cytokines, they exit the pluripotent state and 

differentiate into multiple cell types both in vitro 

and in vivo (Smith, 2001). Moreover, when subject 

to appropriate differentiation cues, ES cells are 

capable of forming relatively homogeneous 

populations of discrete cell types, such as motor 

neurons or cardiomyocytes (Smith, 2001; Wernig 

et al., 2007; Ichida et al., 2014). 

The introduction of ES cells in recipient 

embryos results in the formation of fetuses with 

contribution of cells of both origins (Bradley et al., 

1984). Moreover, since ES cells are pluripotent, 

they require a recipient embryo for the placenta 

formation (Nagy et al., 1990; Eggan et al., 2002). 

Collectively, these in vivo functional assays 

demonstrate the pluripotent nature of ES cells.  

 

Unraveling the control of totipotency and 

pluripotency 

The investigation at the molecular level of 

pluripotency in early embryos holds several 

challenges, such as fast developmental kinetics, 

transcription-independent development during 

cleavage stages, cellular differentiation in a 

relatively short period, and limited stating 

biological material for experimentation 

(Hochedlinger and Jaenisch, 2006; Moura, 2012). 

Due to these factors, most investigations on 

pluripotency control relies on ES cells, thus 

contributing to a fast-paced understanding of the 

mechanism (Hochedlinger and Jaenisch, 2006; 

Moura, 2012). In humans, ES cells require different 

culture conditions compared to mouse counterparts 

to sustain pluripotency and self-renewal (Amit et 

al., 2000; Chen et al., 2015).  

The genetic ablation of a gene contributes to 

the determination of its functions since cell 

phenotype lacking the factor can be readily 

observed (Capecchi, 1989, 2005). By the 

identification of genes required for pluripotency, 

their characterization began to increase (Nichols et 

al., 1998; Niwa et al., 2000; Chambers et al., 2003; 

Dejosez et al., 2008). 

The genes required for the maintenance of 

pluripotency or that play central roles in this 

cellular state are collectively called pluripotency 

genes (Li and Belmonte, 2017). Initially, 

pluripotency genes were identified as those with 

expression restricted to pluripotent or totipotent 

cells, namely germ cells, oocytes, early embryos, 

and ES cells (Schöler et al., 1989; Chambers et al., 

2003; Mitsui et al., 2003). With the increasing 

number of pluripotency genes characterized (Heng 

et al., 2010), it became evident that few of such 

genes indeed have a pluripotency-specific gene 

expression profile. 

The number of pluripotency genes 

characterized continues to grow and thus seems to 

be relatively far from saturation (Subramanian et 

al., 2009; Zheng and Hu, 2014). Therefore, the 

mechanisms by which pluripotency genes control  

this cellular state is expected to grow in players and 

complexity in the foreseeable future. This 

understanding should contribute to better 

understanding of the mechanisms of totipotency, 

pluripotency, embryonic development, and self-

renewal of ES cells. The dissection of how each 
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pluripotency gene contributes to the pluripotency 

state has shed light on how this cellular state is  

controlled at the molecular level (Table 1).  

 

 

Table 1. Requirement of selected pluripotency-associated transcription factors in early preimplantation 

embryos and embryonic stem cells. 

Gene Required for 

Blastocyst 

Development 

Required for  

ES Pluripotency 

Organism Observations of null or 

knockdown phenotypes 

References 

C-MYC No No Mouse Redundancy with L-MYC 

and N-MYC, while sole 

ablation of C-MYC causes 

lower proliferation 

Scognamiglio et al., 2016 

DAX1 No Yes Mouse Impaired testis 

development and  

male infertility in mice 

Yu et al.., 1998;  

Niakan et al., 2006 

GLIS1 Yes Not Reported Cattle Development arrest at the 

4-cell stage in cattle 

Takahashi et al., 2015 

KLF5 No No* Mouse KLF2, KLF4, and KLF5 

redundancy in ES cells*; 

Embryonic loss before 

E6.5 in mice  

Ema et al., 2008 

NANOG No Yes Mouse NANOG-deficient ICM 

fail to generate epiblast 

Chambers et al., 2003; 

Mitsui et al., 2003 

OCT4 No#; 

Yes 

Yes Mouse, Cattle, 

Pig, and 

Human 

ICM is not pluripotent in 

the mouse# 

Nichols et al., 1998; 

Kwon et al., 2015; 

Sakurai et al., 2016; 

Fogarty et al., 2017  

RONIN No Yes Mouse Embryonic loss at E7.5  

in mice  

Dejosez et al., 2008 

SOX2 No, Yes Yes Mouse and 

Cattle 

One intact cell in a two-

cell bovine embryo rescues 

development 

Avilion et al., 2003; 

Gossis and Cibelli, 2014; 

Sakurai et al., 2016 

ZFP281 Unknown Variable** Mouse Possible confounding 

effect of knockdown assay 

or culture conditions** 

Wang et al., 2006; 

Fidalgo et al., 2011 

ZFX No No, Yes Mouse and 

Human 

Full-term development, 

but smaller, less viable  

and diminished pool  

of germ cells 

Luoh et al., 1997 

ICM: inner cell mass. E6.5-7.5: 6.5 and 7.5 embryonic days post-coitus, respectively. 

 

 

Pluripotency-Associated Transcription Factors 

Genes characterized for pluripotency control 

are predominantly composed of transcription 

factors, thus pluripotency-associated transcription 

factors (PATF) (Young, 2011; Yeo and Ng, 2013). 

These PATFs act on gene regulation, by inducing 

or silencing target genes. Several PATFs are 

required for the establishment of cellular states, 

acting as sole factors, but more frequently in an 

orchestrated manner to control. dozens or hundreds  

of  downstream  target  genes  (Boyer et  al.,  2005;  

Kim et al., 2008; Young, 2011). 

A new striking demonstration of the 

importance of pluripotency genes was 

demonstrated by the cellular reprogramming of 

mouse and human somatic cells with their ectopic 

expression (Takahashi and Yamanaka, 2006, 2016; 

Takahashi et al., 2007). These induced pluripotent 

stem (iPS) cells, closely resemble and are 

functionally similar to embryo-derived ES cells 

(Maherali et al., 2007; Okita et al., 2007; Wernig et 

al., 2007; Ichida et al., 2014). 

 

Selection of Functionally-investigated PATFs 

C-MYC 

CMYC is part of a family of transcription 

factors composed of C-MYC, N-MYC, and L-

MYC (Fagnocchi and Zippo, 2017). The C-MYC 

gene displays diverse functions in pluripotent cells, 

such as cell cycle control, cellular metabolism, 

modulation of signaling pathways, epigenetic 

control of target genes, and other transcription 
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factors, such as HOX genes (Fagnocchi and Zippo, 

2017). Both CMYC and NMYC show similar 

expression patterns during mouse preimplantation 

development and are functionally redundant for 

pluripotency (Smith et al., 2010). The expression 

of CMYC has also been analyzed in 

preimplantation embryos of ruminants species 

(Miles et al., 2012; Madeja et al., 2013; Singh et 

al., 2014; Silva et al., 2017), but its functional roles 

in such species remain to be described.  

 

Dosage-sensitive sex reversal, adrenal 

hypoplasia critical region, chromosome X, gene 

1 (DAX1)  

DAX1 (NR0B1) was detected in oocytes and 

during all embryonic development of several 

species (Clipsham et al., 2004; Stickels et al., 2015; 

Moura et al., 2017; Silva et al., 2017). The 

characterization of mice lacking DAX1 

demonstrated to be dispensable for early 

embryonic development (Table 1), implantation, 

and oogenesis (Yu et al., 1998). In contrast, male 

germ cells do not complete spermatogenesis due to 

progressive degeneration of the germinative 

testicular epithelium in mice lacking DAX1 (Yu et 

al., 1998).  

Alternatively, DAX1 contributes to cellular 

reprogramming by facilitating the reactivation of 

other pluripotency genes (Zhang et al., 2014; Lujan 

et al., 2015), although the requirement of its 

activity to maintain pluripotency remains 

controversial (Khalfallah et al., 2009; Zhang et al., 

2014). The understanding of DAX1 downstream 

targets in both pluripotent cells and during 

reprogramming may shed light on how this PATF 

play such contrasting roles.   

 

Glis family zinc finger 1 (GLIS1) 

GLIS1 was identified in a prospection of 

transcription factors that are involved in cellular 

reprogramming (Maekawa et al., 2011). Its 

expression in mice is enriched in eggs and zygotes, 

but lower in ES cells, fibroblasts, and other somatic 

cell types (Maekawa and Yamanaka, 2011). It is 

possible that GLIS1 was not previously identified 

as a pluripotency gene since its expression is quite 

similar between somatic and pluripotent cells 

(Maekawa and Yamanaka, 2011). In cattle, GLIS1 

is more abundant in eggs, embryos up to the four-

stage embryo and is barely detected at the eight-cell 

stage (Takahashi et al., 2015). The knockdown of 

GLIS1 after fertilization blocks embryonic 

development at the eight-cell stage, possibly due to 

a partial or complete block of embryonic genome 

activation (Takahashi et al., 2015). The genome-

wide binding profile of GLIS1 in ES cells may be 

informative about its roles during development and 

possibly for understanding its contribution to 

cellular reprogramming.  

 

Kruppel-Like Factor 5 (KLF5) 

KLF5 is part of the Kruppel-like family of 

transcription factors, composed of 17 members, 

with diverse activities in several biological 

processes such as cellular proliferation, 

metabolism, stress response, among others (Diakiw 

et al., 2013; Farrugia et al., 2016). KLF5 holds 

stable expression throughput embryonic 

development in mice and is required for 

maintenance of pluripotency (Ema et al., 2008; 

Parisi and Russo, 2011). The influence of KLF5 on 

mouse pluripotency depends on the regulation of 

other pluripotency genes and silencing of genes 

responsible for cellular differentiation (Parisi and 

Russo, 2011). The genes KLF2, KLF4, and KLF5 

seen to hold redundant activities in mouse ES cells 

(Jiang et al., 2008). These genes share multiple 

targeted downstream genes, particularly NANOG, 

while concomitant silencing of all three genes is 

required for loss of pluripotency in ES cells (Jiang 

et al., 2008). Further efforts trying to phenocopy 

the cellular effects of KLF members in ES cells 

(i.e., modulation of signaling pathways) should be 

instructive in understanding their roles in 

pluripotency and development.  

 

NANOG  

NANOG is another major PATF that 

controls pluripotency and is required for 

development (Mitsui et al., 2003). NANOG is a 

homeodomain protein, with a unique DNA-protein 

interaction domain and relatively low homology 

across species (Chambers et al., 2003). In the 

mouse, NANOG is expressed after embryo 

compactation and remains restricted to ICM-

forming cells (Chambers et al., 2003). The 

expression of NANOG in livestock is found 

throughout preimplantation development (He et al., 

2006; Gossis and Cibelli, 2014). NANOG is 

required for both ES cell pluripotency in vitro and 

in vivo (Chambers et al., 2003; Mitsui et al., 2003). 

NANOG shares hundreds of target genes with 

OCT4 and SOX2 (Boyer et al., 2005; Loh et al., 

2006). However, NANOG should be functionally 

investigated in greater detail during early 

development and among species. 
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Octamer-binding transcription factor 4 (OCT4) 

The OCT4 gene was the first pluripotency-

associated transcription factor described in early 

embryos (Schöler et al., 1989, 1990; Rosner et al., 

1990) and also the first functionally investigated 

(Nichols et al., 1998; Niwa et al., 2000; Zeineddine 

et al., 2014). OCT4 displays expression restricted 

to germ cells, oocytes, early preimplantation 

embryos, and ES cells. The silencing of OCT4 

causes the formation of blastocysts lacking a 

pluripotent ICM (Table 1), thus with 

developmental potential restricted to trophoblast-

derived lineages (Nichols et al., 1998). Curiously, 

trophoblast cells require paracrine signaling from 

pluripotent cells, to retain their bona fide state and 

viability (Nichols et al., 1998; Le Bin et al., 2014). 

Although cleavage-stage embryonic development 

occurs without OCT4, the segregation between 

epiblast and primitive endoderm is extinguished in 

ICM cells lacking OCT4 (Le Bin et al., 2014).  

The investigation of the OCT4 function at 

the genomic level has substantially contributed to 

the understanding of how OCT4 acts upon the 

control of pluripotency (Boyer et al., 2005; Loh et 

al., 2006; Zeineddine et al., 2014). OCT4 forms 

heterodimers with SOX2 and other TFs (Rizzino, 

2013), to regulate hundreds of downstream target 

genes in mouse and human ES cells (Boyer et al., 

2005; Loh et al., 2006). The OCT4-SOX2 complex 

activates other pluripotency genes, controls several 

signaling pathways, and silences differentiation-

inducing developmental regulators (Boyer et al., 

2005; Rizzino, 2013; Zeineddine et al., 2014). The 

investigation of OCT4 at the genome-wide level 

across species should shed light on how this PATF 

master regulator evolved to contribute to the 

control of pluripotency.   

 

RONIN (THAP11) 

RONIN was identified as a factor that 

physically interacts with Caspase 3 in mouse ES 

cells during differentiation (Dejosez et al., 2008). It 

was previously demonstrated that NANOG protein 

cleavage by Caspase 3 was a mechanism for 

induction of ES cell differentiation (Fujita et al., 

2008). In an investigation of proteins that bind to 

NANOG in ES cells, RONIN (THAP11) was 

identified as a candidate factor. Curiously, RONIN 

was dispensable for early embryogenesis, and its 

target genes were not shared by the core 

transcriptional circuitry established by OCT4, 

SOX2, and NANOG (Boyer et al., 2005; Dejosez 

et al., 2008). This fact suggested that RONIN 

contributes differently than these other PATFs to 

the control of pluripotency. A follow-up analysis 

showed that RONIN participates in the control of 

cellular processes such as transcription initiation, 

alternative splicing, and cellular metabolism 

(Dejosez et al., 2010). The association of RONIN 

to HCF-1 contributes to ES cells self-renewal and 

pluripotency by elevating the expression of genes 

responsible for protein synthesis, and energy 

production (Dejosez et al., 2010). The molecular 

circuitry formed by RONIN needs to be further 

explored to elucidate better how this PATF 

contribute to pluripotency in embryos and ES cells.  

 

SOX2 

SOX2 is one of the twenty members of the 

Sry-related HMG box family of transcription 

factors with various roles during development 

(Avilion et al., 2003). SOX2 forms a heterodimer 

with OCT4 and binds to motifs near each other in 

the genome (Boyer et al., 2005; Rizzino, 2013; 

Zeineddine et al., 2014). The SOX2 mRNA and 

protein are detected throughout preimplantation 

development in several mammalian species and 

becomes restarted to the ICM (Avilion et al., 2003; 

Goissis and Cibelli, 2014), but its requirement for 

development was demonstrated in cattle (Goissis 

and Cibelli, 2014; Sakurai et al., 2016). The 

unraveling of SOX2 requirement during 

preimplantation development of certain species 

should be an attractive area of investigation. 

  

Zinc Finger Protein 281 (ZFP281)  

ZFP281 (Znf281) was identified as a 

pluripotency gene due to its differential expression 

between mouse somatic and ES cells (Wang et al., 

2006). More recently, its expression has been 

described in early embryos of ruminant species 

(Moura et al., 2017; Silva et al., 2017). The 

requirement for ZFP281 to maintain pluripotency 

remains conflicting (Table 1), possibly due to 

differences in experimental conditions such as gene 

silencing approach and ES cell culture conditions 

(Wang et al., 2006; Fidalgo et al., 2011). ZFP281 

forms complexes with NANOG, OCT4, and SOX2 

in ES cells (Wang et al., 2006, 2008), thus 

suggesting to be a downstream factor of the OCT4-

SOX2-NANOG circuitry. Moreover, ZFP281 

controls several downstream target genes with the 

above ciruitry, although its primary role is their 

expression fine-tuning, including other 

pluripotency genes (Wang et al., 2008; Fidalgo et 

al., 2011). Due to this function on other 
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pluripotency genes, ZFP281 reduces the efficiency 

of cellular reprogramming by defined factors 

through blocking NANOG reactivation (Fidalgo et 

al., 2012).  

 

Zinc Finger Protein, X-Linked (ZFX) 

The temporal expression of ZFX during 

embryonic development has been described in 

several species and was one of the first X-linked 

genes characterized (Bernardi et al., 1996; Yu et 

al., 1998; Peippo et al., 2002). ZFX has a homolog 

on the Y chromosome, denominated ZFY, with 

stable expression throughout the preimplantation 

development of male embryos (Bernardi et al., 

1996). Moreover, embryos lacking ZFX can reach 

the blastocyst stage and survive until implantation 

(Luoh et al., 1997; Galan-Caridad et al., 2007). In 

contrast, it was demonstrated that ZFX is necessary 

for both mouse and human pluripotency (Galan-

Caridad et al., 2007; Harel et al., 2012). It remains 

an open question why ES cells are dependent on 

ZFX in contrast to early embryos.  

 

Final Considerations 

Pluripotency has been a focus of intense 

investigation over the past two decades. 

Considerable progress has been made toward 

understanding how a subset of genes, namely 

pluripotency-associated transcription factors, 

contribute to the establishment and maintenance of 

such a cellular state. Due to the intrinsic limitations 

posed by early preimplantation embryos for 

experimentation and likely culture-induced effects 

of ES cell propagation, future investigations should 

continue to be based on these two systems as 

converging approaches. Investigations in livestock 

and other species (aside from mice and humans) 

should also shed light on how pluripotency is 

controlled at the molecular level across mammalian 

species.  
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