Competência oocitária: importância e fatores determinantes in vivo e in vitro

Autores

  • Letícia Ferrari Crocomo Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais (ICA-UFMG), Montes Claros – MG, Brasil.
  • Fernanda da Cruz Landim-Alvarenga Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (FMVZ-UNESP), Botucatu–SP, Brasil.
  • Sony Dimas Bicudo Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (FMVZ-UNESP), Botucatu–SP, Brasil.

DOI:

https://doi.org/10.26605/medvet-v13n1-2619

Palavras-chave:

oócito, cumulus, capacitação, competência, biotécnicas reprodutivas.

Resumo

As biotécnicas reprodutivas impulsionaram a pecuária no cenário do agronegócio mundial em virtude da redução do intervalo entre gerações, acelerado ganho genético e intensificação da produtividade. Nesse âmbito, existem, no entanto, desafios biológicos e fisiológicos que, apesar do avanço científico e biotecnológico, ainda não foram solucionados. A superovulação associada à aspiração folicular e a produção in vitro de embriões a partir de complexos cumulus-oócitos (COCs) que, outrora, entrariam em atresia, tem sua eficiência limitada, basicamente, pela qualidade oocitária, a qual está diretamente relacionada à competência do oócito em completar sua capacitação, representada pela maturação nuclear e citoplasmática, além de suportar a fertilização e embriogênese inicial. Esse processo de capacitação oocitária, tanto in vivo quanto in vitro, determina, portanto, o potencial de desenvolvimento embrionário e envolve uma complexa interação de moléculas regulatórias além de alterações moleculares e estruturais, os quais estão, ainda, sob a influência de fatores intra e extra-ovarianos. Sendo assim, dada a importância do oócito para fertilidade da fêmea, a presente revisão tem como intuito discutir os principais aspectos implicados no contexto da capacitação oocitária e seus fatores interferentes assim como apresentar possíveis métodos de seleção de COCs competentes.

Downloads

Não há dados estatísticos.

Referências

Abd El-Aziz, A.H.; Mahrous U.E.; Kamel, S.Z.; Sabek, A.A. Factors influencing in vitro production of bovine embryos: a review. Asian Journal of Animal and Veterinary Advances, 11: 737-756, 2016.

Adamiak, S.J.; Mackie, K.; Watt, R.G.; Webb, R.; Sinclair, K.D. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biology of Reproduction, 73:918–926, 2005.

Ashworth, C.J.; Toma, L.M.; Hunter, M.G. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philosophical Transactions of the Royal Society of London. Biological Sciences, 364(1534):3351-3361.

Blondin, P.; Sirard, M.A. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development, 41:54-62, 1995.

Choudhary, K.K.; Kavya, K.M.; Jerome, A.; Sharma, R.K. Advances in reproductive biotechnologies. Veterinary World, 9(4): 388-395, 2016. Combelles, C.M.; Racowsky, C.; Albertini, D.F. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Human Reproduction, 17:1006-1016, 2002.

Cree, L.M.; Hammaond, E.R.; Shelling, A.N.; Berg, M.C.; Peek, J.C.; Green, M. P. Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones. Human Reproduction, 30(6):1410– 1420, 2015.

Farag, I.M.; Girgir, S.M.; Khalil, W.K.B.; Hassan, N.H.A.; Sakr, A.A.M.; AdbAllah, S.M.; Ali, N.I. Hormone and culture media effect on in vitro maturation of oocytes effect of hormones, culture media and oocyte quality on in vitro maturation of Egyptian sheep oocytes. Journal of Applied Biosciences, 24:1520-1534, 2009.

Fatehi, A.N.; Zeinstra, E.C.; Kooij, R.V.; Colenbrander, B.; Bevers, M.M. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology, 57:1347-1355, 2002.

Ferreira, E.M.; Vireque, A.A; Adona, P.R.; Meirelles, F.V.; Ferriani, R.A.; Navarro, P.A.A.S. Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence. Theriogenology, 71: 836-848, 2008.

Feng, W.G.; Sui, H.S.; Han, Z.B.; Chang, Z.L.; Zhoum P.; Liu, D.J.; Bao, S.; Tan, J.H. Effects of follicular atresia and size on the developmental competence of bovine oocytes: A study using the well-in-drop culture system. Theriogenology, 67:1339–1350, 2007.

Gandolfi, F.; Brevini, T.A.L.; Cillo, F.; Antonini, S. Cellular and molecular mechanisms regulating oocyte quality and the relevance for farm animal reproductive efficiency. Scientific and Technical Review of the Office International des Epizooties, 24(1): 413-423, 2005.

Gilchrist, R.B.; Lane, M.; Thompson, J.G. Oocytesecreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update, 14(2): 159-177, 2008.

Goovaerts, I.G.; Leroy, J.L.; Jorssen, E.P.; Bols, P.E. Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology, 74(9):1509-1520, 2010.

Han, D.; Lan, G.; Wu, Y.; Han, Z.; Wand, H.; Tan, J. Factors affecting the efficiency and reversibility of roscovitine (ros) block on the meiotic resumption of goat oocytes. Molecular Reproduction Development, 73:238-246, 2006.

Hashimoto, S.; Minami, N.; Takakura, R.; Yamada, M.; Imai, H.; Kashima, N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Molecular Reproduction Development, 57(4): 353-360, 2000.

Hussein, T.S.; Thompson, J.G.; Gilchrist, R.B. Oocyte-secreted factors enhance oocyte developmental competence, Developmental Biology, 296(2): 514-552, 2006.

Hyttel, P.; Fair, T.; Callesen H.; Greve, T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology, 47:23-32, 1997.

Igarashi, H.; Takahashi, T.; Nagase, S. Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reproduction Medicine and Biology, 14(4):159-169, 2015.

Jiao, G.Z.; Cao, X.Y.; Cui, W.; Lian, H.Y.; Miao, Y.L.; Wu, X.F.; Han, D.; Tan, J.H. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. Plos One. 8(3): e58018, 2013.

Karami-Shabankareh, H.; Mirshamsi, S.M. Selection of developmentally competent sheep oocytes using the brilliant cresyl blue test and the relationship to follicle size and oocyte diameter. Small Ruminant Research, 105:244-249, 2012.

Krisher, R.L. The effect of oocyte quality on development. Journal of Animal Science, 82:E14–E23, 2004.

Krisher, R.L. In vivo and in vitro environmental effects on mammalian oocyte quality. Annual Review of Animal Biosciences, 1: 393-417, 2013. Latham, K.E. Stress signaling in mammalian oocytes and embryos: a basis for intervention and improvement of outcomes. Cell and Tissue Research, 363(1):159-167, 2016.

Leroy, J.L.M.R.; Valckx, S.; Sturmey, R.; Bossaert, P.; Van Hoeck V.; Bols, P.E.J. Maternal metabolic health and oocyte quality: the role of the intrafollicular environment. Animal Reproduction, 9(4):777-788, 2012. Lojkić, M.; Uvodić, S.; Getz, I.; Samardžija, M.; Aladrović, J.; Maćešić, N.; Karadjole, T.; Bačić, G.; Matković, M.; Benić, M. The

influence of follicle size on the developmental kinetics of bovine embryos. Veterinarski Arski Arhiv, 86: 613-622, 2016.

Marchal, R.; Vigneron, C.; Perreau, C.; Bali-papp, A.; Mermillod, P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology, 57:15231532, 2002.

Mehlmann, L.M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction, 130: 791-799, 2005.

Mermillod, P.; Dalbie`s-Tran, R.; Uzbekova, S.; Thelie, A.; Traverso, J. M.; Perreau, C.; Papillier, P.; Monget, P. Factors affecting oocyte quality: who is driving the follicle? Reproduction in Domestic Animals, 43(2): 393-400, 2008.

Merton, J.S.; Roos, A.P.W.; Mullaart, E.; Ruigh, L.; Kaal, L.; Vos, P.L.A.M.; Dieleman, S.J. Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattles breending industry. Theriogenology, 5: 651-574, 2003.

Ozawa, M.; Tabayashi, D.; Latief, T.A.; Shimizu, T.; Oshima, I.; Kanai, Y. Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction, 129:621630, 2005.

Paczkowski, M.; Yuan, Y.; Fleming-Waddell J.; Bidwell, C.A.; Spurlock, D.; Krisher, R.L. Alterations in the transcriptome of porcine oocytes derived from prepubertal and cyclic females is associated with developmental potential. Journal of Animal Science, 89(11): 3561-3571, 2011.

Park, J.L; Hong, J.Y.; Yong, H.Y.; Hwang, W.S.; Lim, J.M.; Lee, E.S. High oxygen tension during in vitro oocyte maturation improves in vitro development of porcine oocytes after fertilization. Animal Reproduction Science, 87(1-2): 133-141, 2005.

Pavlok, A.; Lucas-Hahn, A.; Niemann, H. Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Molecular Reproduction and Development, 31:63-67, 1992. Prasad, S.; Tiwari, M.; Pandey, A.N.; Shivastav, T.G.; Chaube, S.K. Impact of stress on oocyte quality and reproductive outcome. Journal of Biomedical Science, 23:36, 2016.

Rodríguez, C.; Anel, L.; Alvarez, M.; Anel, E.; Boixo, J.C.; Chamorro, C.A.; Paz, P. Ovum pick-up in sheep: a comparison between different aspiration devices for optimal oocyte retrieval. Reproduction in Domestic Animals, 41:106-113, 2006.

Russell, D.L.; Gilchrist, R.B.; Brown, H.M.; Thompson, J.G. Bidirectional communication between cumulus cells and the oocyte: Old hands and new players? Theriogenology, 86(1): 62-68, 2016.

Sasseville, M.; Gagnon, M.C.; Guillemette, C.; Sullivan, R.; Gilchrist, R.B.; Richard, F.J. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins, and lipid rafts. Molecular Endocrinology, 23(5): 700-710, 2009.

Sirard, M.A.; Richard, F.; Blondin, P.; Robert, C. Contribution of the oocyte to embryo quality. Theriogenology, 65: 126-136, 2006.

Sohrabi, M.; Roushandeh, A.M.; Alizadeh, Z.; Vahidinia, A.; Vahabian, M.; Hosseini, M. Effect of a high fat diet on ovary morphology, in vitro development, in vitro fertilisation rate and oocyte quality in mice. Singapore Medical Journal, 56(10):573-579, 2015.

Soom, A.V.; Tanghe, S.; Pauw, I. D.; Maes, D.; Kruif, A. Function of the cumulus oophorus before and during mammalian fertilization. Reproduction in Domestic Animals, 37:144151, 2002.

Tamassia, M.; Heyman, Y.; Lavergne, Y.; Richard, C.; Gelin, V.; Renard, J.P.; Chastant-Maillard, S, Evidence of oocyte donor cow effect over oocyte production and embryo development in vitro. Reproduction, 126: 629-637, 2003.

Xie, H.L.; Wang, Y.B.; Jiao, G.Z.; Kong, D.L.; Li, Q.; Li, H.; Zhen, L.L.; Tan, J.H. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Scientific Reports, 6:20764, 2016.

Wang, Q.; Sun, Q.Y. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reproduction, Fertility, Development, 19:1-12, 2007.

Yamamoto, T.; Iwata, H.; Goto, H.; Shiratuki, S.; Tanaka, H.; Monji, Y.; Kuwayama, T. Effect of maternal age on the developmental competence and progression of nuclear maturation in bovine oocytes. Molecular Reproduction & Development, 77: 595-604, 2010.

Zamah, A.M.; Hassis, M.E.; Albertolle, M.E.; Williams, K.E. Proteomic analysis of human follicular fluid from fertile women. Clinical Proteomics, 12(1): 2-12, 2015.

Downloads

Publicado

09-09-2019

Como Citar

Crocomo, L. F., Landim-Alvarenga, F. da C., & Bicudo, S. D. (2019). Competência oocitária: importância e fatores determinantes in vivo e in vitro. Medicina Veterinária, 13(1), 117–125. https://doi.org/10.26605/medvet-v13n1-2619

Edição

Seção

Reprodução Animal