O rúmen como marcador de saúde: revisão de literatura

Autores

  • Bruna de Souza Silva Higino Universidade Federal Rural de Pernambuco, Recife- PE, Brasil.
  • Saulo Gusmão Silva de Tarso Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns-PE, Brasil.

DOI:

https://doi.org/10.26605/medvet-v13n3-3287

Palavras-chave:

poligástricos, doenças metabólicas, produção animal, rebanho.

Resumo

A avaliação ruminal permite a observação do funcionamento do organismo dos ruminantes como um todo, e tem se destacado a medida que a procura por proteína animal avança. Além disso, as maiores exigências de mercado e do produtor em busca de resultados com um menor tempo, são fatores que justificam os estudos em espécies ruminantes. O compartimento fermentativo do sistema digestório desses animais demonstra modificações a nível sistêmico, inclusive na identificação de predisposição de doenças. Devido à crescente mudança dietética em busca da eficiência na produção, fez-se necessário o aprofundamento sobre as possíveis consequências. O ecossistema complexo do rúmen necessita de aspectos próprios para seu bom desempenho. A fisiologia ruminal diverge entre as espécies e os próprios indivíduos, além de ser influenciado diretamente pelas inúmeras dietas a que podem ser submetidos, sendo o rúmen um órgão capaz de indicar o estado metabólico do animal. O uso de parâmetros de comportamento ruminal como marcadores da saúde de rebanhos, aparece como uma ferramenta inovadora e promissora diante dos desafios atuais na produção de ruminantes.

Downloads

Não há dados estatísticos.

Referências

Albright, J.L. Feeding behavior of dairy cattle. Journal of Dairy Science, 76: 486-498, 1993. Alexandratos, N.; Bruinsma, J. Food Agriculture Organization of United States Nations. World agriculture towards 2030/2050 the 2012 revision. Disponível em:http://www.fao.org/docrep/016/ap106e/ap1 06e.pdf>. Acesso em 10 nov. 2017.

Allen, M.S. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science, 80(7): 144762, 1997.

Almeida, P.E.; Weber, P.S.D.; Burton, J.L.; Zanella, A.J. Depressed DHEA and increased sickness response behaviors in lame dairy cows with inflammatory foot lesions. Domestic Animal Endocrinology, 34: 89–99, 2008.

Ametaj, B.N.; Zebeli, Q.; Iqbal, S. Nutrition, microbiota, and endotoxin-related diseases in dairy cows. Revista Brasileira de Zootecnia, 39: 434–444, 2010a.

Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.; Wishart, D.S. Metabolomics reveals unhealthy

alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics, 6: 583–594, 2010b.

Beauchemin, K.A. Ingestion and mastication of feed by dairy cattle. Veterinary Clinics North America: Food Animal Practice, 7(2): 439– 463, 1991.

Bradford, B.J.; Mamedova, L.K.; Minton, J.E.; Drouillard, J.S.; Johnson, B.J. Daily injection of tumor necrosis factor-alpha increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle. Journal of Nutrition, 139(8): 1451-1456, 2009.

Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited review: inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science, 98: 6631–6650, 2015.

Burfeind, O.; Suthar, V.S.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. Journal of Dairy Science, 94: 5053–5061, 2011. Butler, W.R.; Smith R.D. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. Journal of Dairy Science, 72(3): 767-83, 1989.

Calamari, L.; Soriani, N.; Panella, G.; Petrera, F.; Minuti, A; Trevisi, E. Rumination time around calving: An early signal to detect cows at greater risk of disease. Journal of Dairy Science, 97: 3635–3647, 2014.

Catalani, E.; Amadori, M.; Vitali, A.; Bernabucci, U.; Nardone, A.; Lacetera, N. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters. Cell Stress Chaperones, 15: 781–790, 2010.

Chen, Y.; Oba, M.; Guan, L. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Veterinary Microbiology, 159: 451-459, 2012.

Clauss, M.; Lechner-Doll, M.; Streich, W. J. Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos, 102: 253-262, 2003.

Constable, P.; Hoffsis, G. F.; Rings, D. M. The reticulorumen: normal and abnormal motor function. The Compendium – Food Animal, 12: 1008-1015, 1990.

Cooper-Prado, M.J.; Long, N.M.; Wright, E.C.; Goad, C.L.; Wettemann, R.P. Relationship of ruminal temperature with parturition and estrus of beef cows. Journal of Animal Science, 89: 1020-1027, 2011.

De Tarso, S.G.S.; Oliveira, D; Afonso, J.A.B. Ruminants as part of the global food system: how evolutionary adaptations and diversity of the digestive system brought them to the future Br. Journal of Dairy, Veterinary & Animal Research, 3: 1-7, 2016.

De Tarso, S.G.S. The rumen as a health thermometer: importance of ruminal function to the metabolic balance in ruminants – mini review. Journal of Dairy, Veterinary & Animal Research, 5: 3–5, 2017.

De Boever, I.L.; Andries, J.I.; De Brabander, D.L.; Cottyn, B.G.; Buysse, X. Chewing activity of ruminants as a measure of physical structure-a review of factors affecting it. Animal Feed Science and Technology, 27(4): 281–291, 1990.

Esposito, G.; Irons, P.C.; Webbb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal Reproduction Science, 144:60– 71, 2014.

FAO/IAEA. Applications of gene-based technologies for improving animal production and health in developing countries. 1rt ed. Vienna: Springer Science & Business Media, 2005. 793p.

Gonçalves, A.L.; Lana, R.L.; Rodrigues, M.T.; Vieira, R.A.M.; Queiroz, A.C.Q.; Henrique, D.S. Padrão Nictemeral do pH Ruminal e Comportamento Alimentar de Cabras Leiteiras Alimentadas com Dietas Contendo Diferentes Relações Volumoso: Concentrado. Revista Brasileira de Zootecnia, 30(6): 1886-1892, 2001.

Gessner, D.K.; Schlegel, G.; Keller, J.; Schwarz, F.J.; Ringseis, R.; Eder, K. Expression of target genes of nuclear factor E2-related factor 2 in the liver of dairy cows in the transition period and at different stages of lactation. Journal of Dairy Science, 96: 1038–1043, 2013.

Graugnard, D.E.; Moyes, K.M.; Trevisi, E.; Khan, M.J.; Kleisler, D.; Drackley, J.K. Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 96: 918–935, 2013.

Hollmann, M.; Miller, I.; Hummel, K.; Sabitzer, S.; Metzler-Zebeli, B.U.; Razzazi-Fazeli, E. et al. Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet. PLoS ONE, 8: 12, 2013. Humer, E.; Zebeli, Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Animal Feed Science and Technology, 226: 133-151, 2017.

Huzzey; J.M.; Veira, D.M.; Weary, D.M.; Keyserlingk, M.A. Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. Journal of Dairy Science, 90: 32203233, 2007.

Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Association of rumination time with subclinical ketosis in transition dairy cows. Journal of Dairy Science, 99: 1–15, 2016.

Khafipour, E.; Krause, D.O.; Plaizier, J.C.A. Grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 92: 1060-1070, 2009.

Kovács, L.; Kézér, F.L.; Ruff, F.; Szenc, O. Rumination time and reticulo ruminal temperature as possible predictors of dystocia in dairy cows. Journal of Dairy of Science, 100(2): 1-12, 2017.

Lacetera, N.; Scalia, D.; Bernabucci, U.; Ronchi, B.; Pirazzi, D.; Nardone, A. Lymphocyte functions in overconditioned cows around parturition. Journal Dairy of Science, 88: 2010–2016, 2005.

Leblanc, S.J. Interactions of Metabolism, Inflammation, and Reproductive Tract Health in the Postpartum Period in Dairy Cattle. Reproduction in Domestic Animals, 5(47): 18-30, 2012.

Martz, F.; Belyea, R. Role of particle size and forage quality in digestion and passage by cattle and sheep. Journal of Dairy Science, 69: 1996–2008, 1986.

Oliveira, P.G.; Pires, A.V.; Meyer, P.M.; Susin, I.; Villarreta, E.T.; Rodrigues, P.H.M.; Santos, F.A.P. Gluconeogenic supplements do not affect production, reproductive traits and blood metabolite of holstein cows during the transition period. Scientia Agricola, 61(4), 2004.

Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: critical thresholds for prediction of clinical diseases. Journal of Dairy Science, 93: 546–554, 2010.

Pers-Kamczyc, E.; Zmora, P.; Coeslak, A.; Szumacher-Strabel, M. Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. Journal of Animal and Feed Sciences, 20: 315–337, 2011.

Plaizier, J.C.; Khafipour, E.; Li, S.; Gozho, G.N.; Krause, D.O. Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 172: 9–21, 2012.

Prasad, D.; Pradhan, K. Relative concentration of protozoa, bacteria and some enzymes in the rumen of cattle, buffalo and sheep fed various straw-concentrate diets. Indian Journal of Animal Science, 60: 576–581, 1990. Regensbogenova M.; Pristas, P.; Javorsky, P.; Moon-van der Staay, S.Y.; Hackstein, J.H.P; Newbold, C.J et al. Assessment of ciliates in the sheep rumen by DGGE. The Society for Applied Microbiology, 39: 144–147. 2004. Reith, S.; Brandt, H.; Hoy, S. Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livestock Science, 170: 219-227, 2014. Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86: 1201–1217, 2003.

Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; Kayserlingk, M.A.G. Short communication: rumination and feeding behavior before and after calving in dairy cows. Journal of Dairy Science, 96: 7088–7092, 2013. Schröder, U.J.; Staufenbiel, R. Invited review: methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. Journal of Dairy Science, 89: 1–14, 2006.

Sievers, A.K.; Kristensen, N.B.; Laue, H.; Wolffram, S. Development of an intraruminal device for data sampling and transmission. Journal of Animal and Feed Sciences, 13: 207–210, 2004.

Soriani, N.; Trevisi, E.; Calamari, L. Relationships between ruminantion time, metabolic conditions, and health status in dairy cows during the transition period. Journal of Animal Science, 90: 4544–4554, 2012.

Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. Journal of Dairy Science, 96: 1–13, 2013.

Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; AlAbri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. Journal of Dairy Science, 99(9): 7395-7410, 2016.

Steele, M.A.; Vandervoort, G.; AlZahal, O.; Hook,1 S.E.; Matthews, J.C.; McBride1, B.W. Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiological Genomics, 43:308–316, 2011a.

Steele, M.A.; Croom J.; Kahler, M.; AlZahal, O.; Hook, S.E. Bovine rumen epithelium undergoes rapid structural adaptations during graininduced subacute ruminal acidosis. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 300(6): R1515-R1523, 2011b. Suthar, V.S.; Burfeind, O.; Bonk, S.; Dhami, A.J.; Heuwieser, W. Endogenous and exogenous progesterone influence body temperature in dairy cows. Journal of Dairy Science, 95(5): 2381–2389, 2012.

Tewatia, B.S.; Bhatia, S.K. Comparative ruminal biochemical and digestion related physiological characteristics in buffaloes and cattle fed a fibrous diet. Buffalo Journal, 14: 161- 170, 1998.

Urton, G.; Von Keyserlingk, M.A.G.; Weary, D.M. Feeding behavior identifies dairy cows at risk of metritis. Journal of Dairy Science, 88: 28432849, 2005.

Van Soest, P.J. Nutritional ecology of the ruminant. 2nd ed. New York, Cornell University Press, 1994, 476 p.

Ximenes, L.J.F. Segmento de carnes: não basta ser líder em volume, tem que faturar. Caderno Setorial ETENE, (28): 1-11, 2018.

Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassland Science, 54: 231237, 2008.

Weary, D.M.; Huzzey, J.M.; Von Keyserlingk, V.A.G. Using behavior to predict and identify ill health in animals. Journal of Animal Science, 87: 770–777, 2009.

Welch, J.G.; Smith, A.M. Forage quality and rumination time in cattle. Journal of Dairy Science, 53: 797–800, 1970.

Zebeli, Q.; Metzler-Zebeli, B. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93: 1099–1108, 2012.

Zebeli, Q.; Ghareeb, K.; Humer, E.; MetzlerZebeli, B.U.; Besenfelder, U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Research in Veterinary Science, 103: 126-136, 2015.

Downloads

Publicado

23-04-2020

Como Citar

Higino, B. de S. S., & Tarso, S. G. S. de. (2020). O rúmen como marcador de saúde: revisão de literatura. Medicina Veterinária, 13(3), 309–317. https://doi.org/10.26605/medvet-v13n3-3287

Edição

Seção

Clínica e cirurgia de grandes animais