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A B S T R A C T 

Vegetation height is an important parameter in monitoring peatlands. Vegetation height 

can be estimated using remote sensing. Vegetation height can be estimated by utilizing 

DSM and DTM. The data that can be used are LiDAR, X-SAR, and SRTM C. In this 

study, LiDAR data is used for DSM2018 and DTM2018 extraction. This research aims 

to detect the vegetation height in Central Kalimantan peatlands using remote sensing 

technology. The research location is in Bakengbongkei, Kalampangan, Central 

Kalimantan. The integration of X-SAR and SRTM C is used for DSM2000 and 

DTM2000 extraction. DSM2000, DTM2000, DSM2018, and DTM2018 performed 

height error correction with tolerance of 1.96σ (95%). Then do the geoid undulation 

correction to EGM2008. The results obtained are DSM and DTM with a similar height 

reference field. If it meets these conditions, it can be calculated the vegetation height 

estimation. Vegetation height can be obtained using the Differential DEM method. The 

Changing in vegetation height from 2000 to 2018 can be estimated from the difference 

in vegetation height from 2000 to vegetation height in 2018. Results of spatial 

information on vegetation height and its changes need to be tested for accuracy. This 

accuracy-test includes a cross-section test, height difference test, and comparison with 

vegetation height measurements in the ground. The results of this research can be used 

to monitor the changing vegetation height in peatlands. 

Keywords: Vegetation height, LiDAR, SAR, Central Kalimantan. 

 

Introduction 

Vegetation in ecology is a term for the 

whole plant community in a particular place, 

including the communal mix of the flora types that 

make it up and the land cover that it forms. 

Vegetation is a part of life composed of plants that 

occupy an ecosystem or ecological niches in a 

narrower area (Hyde et al., 2006). Different types 

of forests, gardens, grasslands, and tundra are 

examples of vegetation (Poggio et al., 2013). 

Peatlands are landscapes composed of 

imperfect decomposition of vegetation from 

waterlogged trees so that the conditions are 

anaerobic (KGS, 2016; FAO, 2009). The organic 

material continues to accumulate for a long time to 

form layers with a thickness of more than 50 cm 

(Hoscilo et al., 2011). There is the potential for 

mineral and coal energy (Houghton et al., 2012). 

Coal is a non-renewable energy resource. Based on 

the level of its formation process, which is 

controlled by pressure, heat, and time, coal is 

generally divided into five classes: anthracite, 

bituminous, sub-bituminous, lignite, and peat 

(KGS, 2016). 

Anthracite is the highest grade of coal, with 

a metallic luster black, containing between 86%-

98% carbon element (C) with less than 8% (Page et 

al., 2011). Bituminous contains 68-86% of the 

element carbon (C) and the water content of 8-10% 

by weight - the most widely mined coal class in 

Australia. Sub-bituminous contains little carbon 

and lots of water and is, therefore, a less efficient 

heat source than bituminous. Lignite or brown coal 

is very soft coal, which contains 35-75% of its 

weight. Peat has porous characteristics and has a 

moisture content above 75% and the lowest 

calorific value (Posa et al., 2011). Figure 1 is the 

coalition on peatlands. 
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Figure 1. Coalition on peatlands. Font: KGS 

(2016). 

 

Peat is an early form of coal or rotten 

plants' accumulation (Konecny et al., 2015). Peat 

(C60H6O34) has a brown color, and the material has 

not been compacted (Reddington et al., 2014). Peat 

has very high-water content and has shallow 

reliable carbon content (Singh, 2008). It has a very 

high-flying carbon content and is very easily 

oxidized. The value of the heat produced is 

deficient (KGS, 2016). Peat is useful as an 

industrial fuel. Lignite or brown coal is the lowest 

coal rank and is used almost exclusively as fuel for 

power plants. The lignite form is compact and has 

been used as an ornamental stone since Upper 

Palaeolithic times. Lignite (brown coal), 

(C70OH5O25) has a brownish color, a compounded 

material but is very fragile, has high water content, 

has a low reliable carbon content, has a high-flying 

carbon content, is easily oxidized, and the value of 

heat produced is low (KGS, 2016). 

One important thing that needs to be done 

on peatlands is modeling vegetation height 

prediction (Petrou et al., 2012). Vegetation height 

plays a vital role in various ecological and 

environmental applications, such as biodiversity 

assessment and monitoring, landscape 

characterization, conservation planning, and 

disaster management (Brenner et al., 2019). 

Canopy structure estimation and vegetation height 

are fundamental to a series of ecological studies 

(Dong & Wu, 2008). It includes biodiversity 

monitoring, conservation planning, fire modeling, 

and biomass estimation (Simard et al., 2011). 

Traditional ground measurements of 

vegetation height based on the forest's nature are 

carried out using handheld equipment (Bae et al., 

2014). This measurement is expensive, subjective, 

time-consuming, labor-intensive, and difficult to 

do, especially in dense forests (Buckley et al., 

1999). For this reason, other methods for 

estimating forest properties over a wider area are 

often used, such as remote sensing. 

Space Geodesy, like remote sensing, 

involves collecting spatially organized data and 

information about an area of interest by detecting 

and measuring signals (Popescu & Wynne, 2004). 

It is composed of radiation, particles, and fields 

emanating from objects located beyond the sensor 

devices (Franklin, 2001). In this way, it offers the 

potential for more efficient resource assessment. 

The data are in the form of optical images, 

Synthetic Aperture Radar, sonar, video, and Light 

Detection and Ranging (LiDAR).  

Optical images can be Landsat, 

PlanetScope, WorldView, and others. SAR image 

in the form of X SAR, SRTM, ALOS PALSAR, 

Sentinel 1, or similar. LiDAR technology provides 

detailed measurements of different forest 

properties because of its next generation of 3D 

data, its accuracy, and its acquisition flexibility 

(Hyyppä et al., 2000). However, existing LiDAR 

sensors have limited spatial coverage and a 

relatively high acquisition cost (Ruiz et al., 2014). 

On the other hand, satellite data are low-cost and 

offer broader spatial coverage of generalized forest 

structure but are not expected to provide accurate 

vegetation height information. The integration of 

LiDAR and satellite data promises to improve the 

measurement, mapping, and monitoring of forest 

properties (Popescu & Wynne, 2004; Bergen et al., 

2009). 

One of the most critical forest properties is 

vegetation height and canopy cover (Seavy et al., 

2009). Vegetation height is the height of the 

vegetation in a stand, relative to the ground. It is a 

function of the species composition, climate, and 

site quality and can be used for land-cover 

classification or in conjunction with vegetation 

indices (Poggio & Gimona, 2014). If coupled with 

species composition and site quality information, 

vegetation height serves as an estimate of the stand 

age or the successional stages (Zhou et al., 2009). 

Vegetation height is also a useful indicator of forest 

age and habitat quality. It is an essential input 

variable for ecosystem and forest fire models and 

is positively correlated with vegetation biomass 

and productivity (Carlson et al., 2012). 

Space Geodesy in vegetation height 

estimation when in situ or LiDAR data are not 

available or affordable, thus facilitating and 

reducing the cost of ecological monitoring and 

environmental sustainability planning tasks. This 

condition shows a promising alternative in 

estimating vegetation height when in situ or 

LiDAR data is not available or affordable, thus 

facilitating and reducing the costs of ecological 

monitoring and environmental sustainability 

planning tasks. 

Vegetation height is also an indicator of 

forest age and valuable habitat quality (Flynn et al., 

2002). It is an essential input variable for 

ecosystem models and forest fires and is positively 
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correlated with vegetation biomass and forest 

modeling because it uses accurate 3D data and 

flexibility in its acquisition (Birdal et al., 2017). 

The LiDAR sensor complies with this condition. 

However, LiDAR sensors have limited spatial 

coverage and relatively high acquisition costs 

(Hopkinson et al., 2006). Satellite data has the 

advantage of low cost and offers more extensive 

spatial coverage. The disadvantage is that it cannot 

provide direct information related to the vegetation 

height. The integration of LiDAR and satellite data 

will help improve the measurement, mapping, and 

monitoring of forest properties (Trier et al., 2018). 

Research from Noggle and Fritz (1983) 

states that vegetation growth can be seen from 

increased vegetation height, length, width, leaf 

area, dry weight of organs (roots, stems, leaves, and 

fruit), number of cells, and content of specific 

chemical elements. One method that can be used 

for height detection of vegetation is from satellite 

image data with a height model approach (Gehrke 

et al., 2008).  

Height models can be made from optical, 

radar, and sonar data (Maune & Nayegandhi, 

2018). The height model uses optical satellite 

image data, aerial photography, video (Kumay 

2015). In optical data, height models can be done 

using the stereo model method, videogrammetry, 

and perceptive depth cue. In addition to optical 

data, radar satellite data can also be used to create 

height models. 

Nowadays, the problem faced in 

determining the relative vegetation height is rapid 

mapping and large areas. Besides, the available 

Digital Surface Model (DSM) has not yet been 

made of height error correction and has not been 

downgraded to Digital Terrain Model (DTM) 

(Vanicek & Krakiwsky, 1986). One way that can 

be used to correct height errors and DTM is to 

approach the calculation of leveling (Gillani & 

Wolf, 2006). The algorithm is built based on the 

correlation of surface height with orthometric 

height in the lowest low grade (Maune & 

Nayegandhi, 2018). This algorithm, which is used 

for determining the relative height of a surface, can 

be used to calculate vegetation height (Lee et al., 

2011). This vegetation is detected by classification 

(Maune & Nayegandhi, 2018). This study aimed to 

detect the vegetation height in Central Kalimantan 

peatlands with space geodesy technology. 

 

Material and Methods 

Study area 

The area studied was Bakengbongkei, 

Kalampangan. This area is located on the border of 

Pulang Pisau Regency and Palangkaraya City. The 

Pulang Pisau Regency is a regency in Central 

Kalimantan province; Palangkaraya City is the 

capital, with 8,997 km². 

Central Kalimantan is a place of national 

priority Peat Hydrological Unity or Kesatuan 

Hidrologis Gambut (KHG). This area is peatland 

with peat depth > 20 m. In this region, there is a lot 

of peat potential (Van Den Eelaart, 2008). Remote 

sensing data can be used to explain various 

physical forms and changes in natural resources. 

The location of the study can be seen in Figure 2. 

 
Data collection 

X-SAR is a cooperative space project 

between Germany and Italy in the field of Earth 

observation from space. SRTM C is a NASA space 

program that is carried out in conjunction with the 

X-SAR program. Both sensors use the same SPCA 

shuttle. X-SAR uses band X, and SRTM uses band 

C. X-SAR has a spatial resolution of 1 arc-second 

with a relative vertical accuracy of 3-5 m. SRTM C 

has a spatial resolution of 3 arc seconds with a 

relative vertical accuracy of 3-8 m. X-SAR data is 

integrated with SRTM C (Reuter et al., 2007). This 

integration of data is used as 2000 data.  

LiDAR is an object detection method that 

uses the principle of laser beam reflection to 

measure the distance of objects on the earth (García 

et al., 2018; Maune & Nayegandhi, 2018). This 

technology was first used in the 1960s for aviation 

purposes but has only been famous for mapping 

systems since the 1980s. The working principle of 

LiDAR is elementary (Hill & Broughton, 2009). 

LiDAR calculates the distance by removing the 

laser transmitter's light to a surface, then 

calculating how long it takes the laser beam to 

return to the receptor (Ackers et al., 2015). 

LiDAR devices shoot laser light rapidly at 

a surface; even some LiDAR devices shoot around 

150,000 laser pulses per second. Then the sensor 

component in LiDAR calculates the time taken 

from each laser pulse to bounce from a surface to 

the sensor so that the distance calculation results 

are obtained with high accuracy (Koma et al., 

2019). 
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Figure 2. Research location in Bakengbongkei, Central Kalimantan, Indonesia. Font: PlanetScope Imageries 

in November 2019.  

 
Differential DEM 

DSM is made using the SAR 

interferometry (InSAR) method (Gehrke et al., 

2008; Lee et al., 2011). DSM2000 is a DSM in 

2000 that was made in INSAR with X-SAR and 

SRTM C data. Both of these data were integrated 

into DEM. It aims to create a new DSM with the 

advantages of each input data. DSM from X SAR 

has a high spatial resolution, but the data coverage 

is not much. SRTM C has the advantage of wide-

area coverage, and data penetration is closer to the 

ground compared to X SAR data. Each DSM's 

advantages are integrated to produce a new DSM 

(DSM2000) with high spatial resolution and higher 

vertical accuracy. DTM2000 is obtained from 

DSM2000 conversion by considering various 

factors such as the point of view of the treetops, the 

canopy's width, and others. 

DSM2018 is DSM in 2018, which was 

extracted from recording with LiDAR. LiDAR 

mapping recorded each point clouds in DSM and 

DTM conditions. It also needs to be done by 

choosing the first return point and the last return 

point. This first return point is then used in making 

DSM. The last return point is used to make DTM. 

This DTM was later named DTM2018. The second 

return point is used in canopy detection. This 

canopy becomes an indicator in the detection of 

vegetation. 

Every DSM and DTM processing will 

require height error correction and geoid 

undulation correction. DSM2000, DTM2000, 

DSM2018, and DTM2018 performed height error 

correction with a tolerance of 1.96σ (95%) 

(ASPRS, 2014). Geoid undulation correction using 

Earth Gravitational Model (EGM) 2008. After 

correction, all DSM and DTM used in this study 

already have a similar height reference field. 

The method for calculating vegetation 

height uses the Differential DEM method. This 

method reduces height on DSM with DTM. 

Vegetation height of 2000 was obtained from 

DSM2000 reduced by DTM2000. Likewise, the 

vegetation height of 2018 was obtained from the 

reduction of DSM2018 with DTM2018.  

Changes in vegetation height from 2000 to 

2018 were obtained because of a reduction in 

vegetation height in 2018, with a vegetation height 

of 2000. The height yield of vegetation is then 

checked for accuracy testing. There are three 

methods used: the cross-section test, the height 

difference test, and the comparison test with the 

height measurement data for vegetation in the 

ground. 
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X-SAR + SRTM C LiDAR

DSM2000

DTM2000

DSM2018

DTM2018

Vegetation 
Height 2000

Vegetation 
Height 2018

Differential DEM

Vegetation Height Change 2000-2018

ACCURACY TEST

Spatial Information of Vegetation Height
 

Figure 3. Research flowchart. Font: Julzarika et al. 

(2020). 

 

The accuracy test also uses a tolerance of 

1.96σ (95%) (ASPRS, 2014). The result of this 

accuracy test is spatial information about changes 

in vegetation height. Explanations regarding 

methods and procedures for obtaining spatial 

information on vegetation height can be seen in the 

flow chart in Figure 3. 

 

Results and Discussion 

The results obtained from this study are 

DSM, DTM, and vegetation height. X SAR 

produced DSM in 2000 and DTM in 2000, and 

vegetation height in 2000. LIDAR data produced 

DSM in 2018, DTM in 2018, and vegetation height 

in 2018. The difference between the two data in 

2000 and 2018 will result in changes in vegetation 

height. 

The DSM 2000 resulted from the 

integration of DEM X SAR and SRTM C. Both of 

the DEMs were integrated, and some corrections 

were made, such as height error correction and 

geoid undulation correction. The geoid field used 

is EGM2008. Height errors can be minimized by 

filtering data with a 95% confidence level. The 

maximum DSM value in 2000 is 32 m, and the 

minimum value is -12 m. Several regions have 

negative elevation values. This value is located on 

the river and swamp. Figure 4 is DSM2000. 

 

 
Figure 4. DSM in 2000 (DSM2000) was extracted 

from the integration of X-SAR and SRTM C. Font: 

Julzarika et al. (2020).  

 

The DTM2000 was converted from 

DSM2000 data. The DSM2DEM method is used in 

the conversion of DSM to DTM. From the results 

of DTM2000, it is obtained that the maximum 

elevation value is 9.2 m. Figure 5 is DTM2000. 

 

 
Figure 5. DTM in 2000 (DTM2000), it is converted 

from DSM2000 to be DTM. Font: Julzarika et al. 

(2020).  

 

DSM2018 obtained the extraction of 

LiDAR processing. DSM is extracted using point 

clouds from the first return. All selected data need 

to be checked for height errors. Usually, LiDAR 

recording results of data are minimal height errors 

occur. Figure 6 is DSM2018. 

 

 
Figure 6. DSM in 2018 (DSM2018) was extracted 

from LiDAR. Font: Julzarika et al. (2020). 

 

In addition to DSM, data recording LiDAR 

data can also be used for making DTM. The last 

return points could data is used for making DTM. 

The data also needs to be checked for height errors. 

Elevation in terrain has obtained a maximum of 9.7 
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m. There are some lower height points and are in 

areas that have water. DTM in 2018 (DTM2018) 

was extracted from the last return points cloud data, 

see Figure 7. 

 

 
Figure 7. DTM in 2018 (DTM2018). It was 

extracted from the last return of points cloud data 

in LiDAR. Font: Julzarika et al. (2020). 

 

At the vegetation height in 2000, the 

maximum value was 24.5 m, while the minimum 

value was -3 m. This area has land cover in the 

form of primary forests, oil palm plantations, and 

shrubs. The condition of this land cover, which 

became this region, has a higher land cover. A river 

also crosses this region. Figure 8 shows the 

vegetation height in 2000. 

 

 
Figure 8. Vegetation height in 2000. Font: 

Julzarika et al. (2020). 

 

At the vegetation height in 2018, a 

maximum value of 70 m is obtained and a 

minimum value of 43 m. Some vegetations have 

increased height. The area of oil palm plantations 

experienced a more significant increase in height. 

Figure 9 is the height vegetation 2018.  

 

 
Figure 9. Vegetation height in 2018. Font: 

Julzarika et al. (2020). 

 

Vegetation height in 2000 and vegetation 

height in 2018 can be used to estimate changes in 

vegetation height in 2000-2018. A difference 

operation carried out the data between the 

vegetation's height on the same object. The change 

in vegetation height in this area is 20-45 m. Figure 

10 shows the changing of vegetation height in 

2000-2018. 

 

 
Figure 10. Vegetation height change in 2000-2018. 
Font: Julzarika et al. (2020). 

 

Accuracy testing is done in three ways: the 

cross-section test, the height difference test, and 

comparison with ground measurement data. 

 

Cross-section accuracy test 

The cross-section reflects the region's 

DTM appearance. This cross-section includes the 

river-road section. Quantitatively, it can be 

described as the height difference between the 

plains around the river and the river thalweg. These 

differences can be seen in the cross-section 

between DSM2020-DSM2018 (see Figure 11) and 

the cross-section between DSM2000-DTM2000 

(see Figure 12). It can be seen that the difference in 

height on the river bank is not extreme, and the 

topography is flat. It illustrates that the condition of 

the DTM is approaching the conditions in the 

ground. In the river area, the height difference is 

vast, indicating the depth of the river. Cross-section 

checking between DSM and DSM is also required. 

It aims to see the appearance of the profile along 

the line being tested. Figure 11 is a cross-section of 

DSM2000 and DSM2018. 

 

 
Figure 11. The cross-section between two DSM 

change in 2000-2018. Font: Julzarika et al. (2020). 
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If we look at the cross-section, there are 

two lines; red and yellow. The red line area is 

where the vegetation has been cut down, for 

example, at the starting point of cross-section 

checking.  

 

 
Figure 12. A cross-section between DSM and DTM 

change in 2000. Font: Julzarika et al. (2020). 

 

Cross-section checking between DSM and 

DTM is also required. Checking is done on 

DSM2000 with DTM2000. Figure 12 is a cross-

section that crosses a river. For example, at the 

beginning of the line, the DSM value is located at 

22 m elevation while the DTM value is 6 m. Based 

on these conditions, the vegetation height value is 

16 m, likewise with other objects. Visually, the 

surface pattern and the DSM2000 and DTM2000 

terrain patterns are still in the normal range. The 

cross-section also shows that river patterns and 

shapes are still suitable for the DSM and DTM. 

 

Height difference test 

The height difference test can be useful in 

determining the height difference between two or 

more points. The height difference between the 

point's determination refers to the average sea 

level, local height, or ellipsoid, while the whole 

point on the height model refers to a specific 

reference plane or datum. If all points tested in 

closed polygon form have a minimum height 

difference value (close to zero), the height model 

has a point height relative to the data. It eliminated 

the systematic errors that still exist in the height 

model. Height difference test results on DTM of 

1.753e-16 (~ 0). It indicates that DTM integration 

is free of blunders, systematic errors, and minimal 

random errors.  

 

Comparison test with ground measurements 

There are three test locations conducted in 

this region. These locations can be seen in Table 1. 

 

Table 1. Comparison of the height difference of vegetation height (processed) with vegetation height (ground). 

Vegetation height (processed) was extracted from DSM and DTM processing. Vegetation height (ground) is 

from ground survey measurement. Font: Julzarika et al. (2020).  

No Latitude Longitude 
Vegetation height 

(processed) 

Vegetation height 

(ground) 

Height 

difference 

1 2° 22' 25.8798" S 114° 06' 17.8010" E 5.107 m 5.3 m 0.193 m 

2 2° 20' 59.8805" S 114° 05' 32.6671" E 7.533 m 7.7 m 0.167 m 

3 2° 19' 59.6768" S 114° 04' 26.9091" E 4.588 m 4.8 m 0.212 m 

  

Tests at point 1 were made to compare the 

vegetation height (processed) with the vegetation 

height measured in the ground. Vegetation height 

(processed) is 5.107 m, while vegetation height 

(ground) is 5.3 m. The difference in height between 

the two measurements was 0.193 m. Measurement 

at point 2 obtained a vegetation height (processed) 

of 7.533 m while vegetation height (ground) of 7.7 

m, meaning a difference in a height difference of 

0,167 m. Point 3 has a vegetation height 

(processed) of 4.588 m, while the results of 

measurements in the ground obtained a vegetation 

height of 4.8 m, meaning a difference in a height 

difference of 0.212 m.  

Vegetation height estimation can be 

extracted from DSM and DTM of remote sensing 

data (Rybansky et al., 2016). It can be predicted by 

comparing DSM with DTM (Rybansky et al., 

2016). Vegetation height change can be obtained 

by the difference in vegetation height in 2000, with 

vegetation height in 2018. Vegetation height in 

2018 can be tested by measuring the vegetation 

height in the ground. Vegetation height can be 

estimated from texture analysis (Petrou et al., 

2012). This height difference is needed to 

determine the quality of the resulting height data. 

This quality is known for vertical accuracy by 

comparing it with field measurements (Petrou et 

al., 2012). The vertical accuracy shows the 

maximum error allowed in vegetation height 

mapping. (Hopkinson et al., 2004). This error can 

occur due to land cover in grass/shrub areas and 

water vegetation cover in peat swamps. Errors that 

occur can be minimized with high data with high 

vertical accuracy (Hopkinson et al., 2004).  

The vertical accuracy test is carried out by 

comparing the measurement height with the results 

of field measurements. From the height difference 

in Table 1, we can see that the value is < 0.5 m. It 

indicates that the vegetation height obtained from 

DSM and DTM is more optimal to visualize. It can 
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be used for vegetation height mapping for a wider 

area with relatively sufficient time and low cost. 

From Table 1, the DTM difference test 

indicates that DTM is free of blunders, systematic 

errors, and minimal random errors. From the cross-

section, we can see the DSM in 2000 has an 

elevation of 20 m while in DSM in 2018, the 

elevation is around 2 m. It indicates a reduction in 

vegetation height. This condition generally occurs 

in areas with land cover in the form of oil-palm 

plantations and industrial plantations. The 

vegetation height estimation results can be used for 

various survey mapping applications.  

The effect of errors on the DTM difference 

test in Table 1 was also found in other studies 

regarding the accuracy in estimating vegetation 

height (Stereńczak & Zasada, 2011). Their research 

is related to checking the accuracy of tree height 

estimates with LiDAR data in temperate rain 

forests. The algorithm they use is that segmenting 

stands into individual trees (Stereńczak. et al., 

2008). They found the cause of the error that 

caused the vegetation height estimate to be less 

than optimal. In this study, the causes of height 

estimation errors were also taken into account to 

get an accurate vegetation height value. These 

errors are in the form of errors in estimating the 

treetop height, the model ground height, and the 

tree slope, and the relationship between these errors 

and the stand level and location variables is 

explored (Naesset & Bjerknes, 2001; Järnstedt et 

al., 2012). 

The measurement of vegetation height 

estimates the results from the reduction of DSM 

with DTM (Anggraini & Julzarika, 2019). The 

vegetation height is relative, which illustrates the 

dominant condition on each DTM pixel. The DTM 

is the result of conversion from DSM. The 

vegetation height can also be used for surface 

volume calculations (Garcia et al., 2018).  

In the DTM, the vertical accuracy value is 

60.4 cm, and the DTM can be used for 1: 10000 

scale mapping. The DSM obtained a vertical 

accuracy-test value of 37 cm and can be used for 

mapping a scale of 1: 10,000. In this study, the high 

difference value was also obtained <0.5 m. This 

condition is similar even though it is different in the 

study area and can be used for mapping at a scale 

of 1: 10,000. 

Research on vegetation height with LiDAR 

data and QuickBird imagery has been carried out 

(Su et al., 2012). They do this by segmenting the 

QiuckBird image and filtering LiDAR based on 

mathematical morphology to obtain tree 

boundaries. The highest point on each object is 

used to estimate tree height. (Persson & Perko, 

2016). The highest point is the DSM, while the 

lowest point is the DTM used in this study. 

 

Conclusion 

Remote sensing data can be used for 

vegetation height estimation. Vegetation height in 

2000 is calculated from DSM and DTM resulting 

from the integration of X-SAR and SRTM C. 

Vegetation height in 2018 can be calculated from 

DSM and DTM LiDAR. The difference in 

vegetation height of 2000-2018 can be estimated 

from the vegetation height of 2000 and vegetation 

height of 2018. DSM, DTM, and vegetation height 

were tested for accuracy in three ways, namely the 

cross-section test, height difference test, and 

comparison with ground measurements. 
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