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Cyanobacteria constitute a diverse group of photosynthetic prokaryotes with
significant metabolic complexity, capable of synthesizing bioactive pigments and
compounds with potential applications as natural bioproducts, including carotenoids,
scytonemin, and mycosporine-like amino acids (MAAs). The study aimed to explore
the potential of terrestrial cyanobacteria isolated from the Brazilian Atlantic Forest
to produce photoprotective (anti-UV) substances and to investigate the effect of UVA
radiation on this production. Six strains of terrestrial cyanobacteria were isolated
from the Brazilian Atlantic Forest and subjected to 24 hours of UV-A irradiation.
Afterward, the output of photoprotectors (scytonemim and MAAs) and carotenoids
was evaluated by maceration with 100% acetone and 20% methanol, then measured
by spectrophotometry. The investigation revealed significant production of
scytonemin under UV-A irradiation in the Aphanothece sp. CCIBt 3609 and
Plectolyngbya sp. CCAPE 79 strains. This study provides unprecedented data on
scytonemin production in the genus Plectolyngbya and solidifies Aphanothece as a
potential source of the anti-UV compound scytonemin.

Keywords: Anti-UV, Atlantic Forest, bioactive compounds, scytonemin, secondary
metabolites.

Introduction

which enable these organisms to thrive in various

Cyanobacteria are ancient photosynthetic
prokaryotes comprising approximately 8,000
species, grouped into 150 genera, and exhibit vast
morphological diversity, ranging from unicellular
to colonial and filamentous forms, including
specialized cells such as heterocytes (Hachicha et
al., 2022). Having existed for approximately 3.5
billion years, they played a crucial role in the Great
Oxidation Event, which occurred between 2.4 to
3.2 billion years ago (Urrejola et al., 2020). This
long evolutionary history exposed cyanobacteria to
diverse environmental pressures, leading to their
adaptation to a wide range of habitats, including
aquatic environments (e.g., lakes, seas, and rivers),
terrestrial habitats (e.g., soils and biofilms
colonizing various surfaces), and extreme
conditions such as deserts, hot springs, and polar
regions globally (Guerreiro et al., 2020). The
evolutionary success of cyanobacteria is attributed
to their biosynthesis of secondary metabolites,
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extreme conditions (Nowruzi et al., 2020). These
compounds have garnered significant
biotechnological  attention = for  potential
applications in cosmetics and pharmaceuticals
(Morone et al., 2019). Despite the predominant
focus on marine cyanobacteria, molecules
synthesized by terrestrial cyanobacteria also
exhibit pharmacological activity (Nowruzi et al.,
2020; Toribio et al., 2020; Khalifa et al., 2021).
Cyanobacteria produce a variety of
bioactive  compounds, including anti-UV
molecules such as scytonemin and mycosporine-
like amino acids (MAAs), which have potential
applications in pharmaceutical products. MAAs
are a group of more than 20 small (<400 Da),
water-soluble, colorless molecules found in the
cytoplasm of cyanobacteria, fungi, macroalgae,
and microalgae (Singh et al., 2023). These
compounds function as photoprotectors and
antioxidants, =~ with  maximum  absorption
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wavelengths ranging from 310 to 362 nm (Rosic,
2019; Kumari et al., 2021). Scytonemin is a
lipophilic biomolecule exclusively found in the
extracellular sheath of cyanobacteria, with a
yellowish color and a photoprotective role against
long-wavelength UV radiation (315-400 nm), with
a maximum absorption at 384 nm. It is prevalent in
cyanobacteria inhabiting high-light incidence
extreme environments (Rastogi & Incharoensakdi,
2014; Rastogi et al., 2015; Singh et al., 2023).
Carotenoids are tetraterpene pigments known for
their vibrant yellow, orange, red, and purple colors.
These are among nature's most abundantly
distributed pigments, found in various organisms,
including photosynthetic bacteria, some Archaea,
fungi, algae, plants, and animals (Maoka, 2020). In
cosmetics, non-protein amino acids such as
mycosporines and cyanopeptides have been
recognized for their considerable potential as
natural bioproducts. They hold promises for
applications in skin care, notably in sunscreens and
anti-aging formulations (Garlapati et al., 2019;
Geraldes et al., 2020).

The Atlantic Forest Domain is a tropical
forest mostly held along the Brazilian coast, rich in
biodiversity, and home to numerous endemic
species (Lima et al., 2020). Many new
cyanobacterial genera and species were described
in this forest, and some have shown significant
biotechnological potential (Genuario et al., 2019;
Caires & Affe, 2021). However, reports on the
ability of terrestrial tropical cyanobacteria to
synthesize bioactive metabolites are limited
(Geraldes et al., 2020). This study aimed to explore
the potential of terrestrial cyanobacteria isolated
from the Brazilian Atlantic Forest to produce
photoprotective (anti-UV) substances and to
investigate the effect of UVA radiation on this
production.

Material and Methods
Cyanobacteria strains and growth conditions

Six strains of terrestrial cyanobacteria were
selected for this study based on the locations where
they were initially sampled, from habitats exposed
to sunlight in the Brazilian Atlantic Forest across
the states of Pernambuco, Rio de Janeiro, and Sao
Paulo, as listed in Table 1. Initially, three of these
strains were housed at the Cole¢do de Cultura de
Algas, Cianobactérias e Fungos do Instituto de
Botanica (CCIBt), within the Instituto de Pesquisas
Ambientais, Unidade Jardim Botanico, Sdao Paulo,
before being donated to the Colecdo de Cultura de
Cianobactérias e Algas de Pernambuco (CCAPE),
established at the Universidade Federal Rural de
Pernambuco  (UFRPE).  Concurrently, the
remaining three strains are also maintained at the

Gama, W.A.; Souza, G.J.S.; Nascimento, L.C.B.

CCAPE. The cultures were grown in ASM-1
medium at room temperature (23°C = 2) with a
12/12-h light/dark cycle, illuminated with cool
white LED lights at approximately 30 pmol
photons m? s!, following the guidelines

established by Jacinavicius et al. (2013)

Experimental setup

The experimental procedure involved
cultivating cyanobacterial strains according to the
protocols outlined by Jacinavicius et al. (2013),
with cultures grown to a volume of 1,000 mL.
Subsequently, the culture volume underwent
centrifugation (Bench centrifuge 5,000 rpm K14-
5,000 m Kasvi. Parana/Brazil) to remove most of
the liquid phase, leaving behind a pellet/biomass,
which was then weighed and evenly distributed in
Petri dishes containing solid medium (ASM-1 +
1% agar) in triplicate for both treatment and control
groups. Following this, the Petri dishes, each kept
open and containing the biomass, were subjected to
different conditions: exposure to UV-A radiation
(treatment) using actinic lamps (400 - 320 nm) and
to LED white lights (control) for 24 hours, in line
with the standard conditions of CCAPE.
Subsequently, the biomass from each set of
triplicates was lyophilized, and the resulting dried
biomass was weighed using a Lyophilizer L101
Liobras (Sao Paulo, Brazil).

Extraction and screening

The extraction of carotenoids and
scytonemin followed the methodology outlined by
Garcia-Pichel & Castenholz (1991). The biomass
of each triplicate was macerated in a pestle and
mortar made of agate using 8 mL of 100% acetone,
followed by centrifugation at 5,000 g for 9 minutes.
The resulting supernatant was collected and used to
qualify  pigments by  spectrophotometry:
scytonemin (384 nm), carotenoids (490 nm), and
chlorophyll a (663 nm) were measured using a Bel
UV-MS51 UV-Vis spectrophotometer
(Monza/Italy). Then, 8 mL of 20% methanol was
added to the samples, which were centrifuged at
5,000 g for 4 min and left overnight at 4°C.
Following this, they were incubated at 45°C in a
water bath (Heidolph OB 4000, Germany) for 2.5
hours, then centrifuged at 5,000 g for 2 minutes to
collect the supernatant for screening MAAs using
the spectrophotometric method described by
Browne et al. (2023). Photoprotectors
Mycosporine-like amino acids (MAAs) were
analyzed at wavelengths 309, 310, 323, 325, 326,
330, and 332 nm.
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Statistical analysis

All data were assessed for normality and
homoscedasticity using the Shapiro-Wilk test and
then compared using the T-test to observe
differences between the control and treatment
groups regarding photoprotectors and carotenoid

production. A nonparametric test was employed if
the data did not follow a normal distribution.
Values with p < 0.05 were considered statistically
significant. The statistical analyses were performed
using GraphPad Prism® software (GraphPad
Software, Boston, USA).

Table 1. List of strains for the evaluation of the production potential of photoprotectors. CCIBt Culture
Collection of Algae, Cyanobacteria, and Fungi of the Institute of Botany; CCAPE: Culture Collection of
Cyanobacteria and Algae of Pernambuco. Font: Gama et al. (2024).

Strains Sampling Location Substrate Identification
CCAPE 75 T"ng,‘ 8;3‘2516].3;?8103%521111 a?tli?{;vﬂ; E Tree bark Chlorogloea sp.
CCAPE 79 Tz(lggglzl,rj 6].580"08103g5ig?11 a?t;?nw/f)’E Clay brick Plectolyngbya sp.
CCAPE 80 T?§§8;€6§;98103g5i5?11 a?tli?nW/I;E Concrete Scytonema sp.
comuzsgy o do Mar Sute Park Santa Vg Roouop Nostoc .
CCIBt 3601 Prainha/RJ (23°02'27.9"S 43°30'19.9"W) Rock Gloeothece sp.
CCIBt 3609 J“rfzijf;fg‘:g,cs"fﬁigg} 438%“% SP Rock Aphanothece sp.

Results characteristics of light microscopy can be used for

Morphological identification

The taxonomic analysis was conducted
using microscopic identification with a Zeiss Light
Microscope. Identifications were based primarily
on Strunecky et al. (2023). Only morphological

identification, and these are insufficient to identify
cyanobacterial species; therefore, the strains used
in this study are identified only to the genus.
Cyanobacteria strains are shown in Figure 1.

Figure 1. The strains analyzed in this study. A. Chlorogloea sp. (CCAPE-75); B. Plectolyngbya sp. (CCAPE-

79); C. Scytonema sp. (CCAPE-80); D. Nostoc sp. (CCIBt 3588); E. Gloeothece sp. (CCIBt 3601); F.
Aphanothece sp. (CCIBt 3609). Bars = 10um. Font: Gama et al. (2024).

Photopigments and anti-UV compounds evaluation
The content of carotenoids was constant
between the strains and the treatments, and no
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significant statistical difference (p<0.05) was
observed. The accumulation of carotenoids was
detected in the strains exposed to white light and
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UV-A radiation (Figure 2B). Thus, our results
revealed constant carotenoid content across all
strains and treatments, with no significant

differences.
After statistical analysis, it was possible to
identify that the UV-A irradiation enhances the

Chlorophyll a

biosynthesis of the photoprotector scytonemin
(Figure 3A) in two tested strains. This behavior
was demonstrated by the strain Aphanothece sp.
CCIBt 3609 under the UV-A irradiation treatment
showed a significant difference (p<0.0001) in
comparison with the white light (control).

Carotenoids
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Figure 2. Effects of different irradiations (white light and UV-A) on the concentration of chlorophyll a (A) and

carotenoids (B) in terrestrial cyanobacteria strains. Font

The strain Plectolyngbya sp. CCAPE 79
also showed increased scytonemin production after
exposure to UV-A radiation, which was
significantly different from the control (p=0.0039).
The discussion must be restricted to the
significance of the data presented and to
comparisons with data from the literature, without
any conclusions based on them.

: Gama et al. (2024).

None of the strains exhibited significant
differences between control and treatment in the
production of MAAs at any wavelength (Figures 3
and 4). However, the strain Plectolyngbya sp.
CCAPE 79 displayed accumulations of MAAs of
309 nm (Figure 3B) and 310 nm (Figure 3C), and
the strain Chlorogloea sp. CCAPE 75 exhibited
accumulations of MAAs at 310 nm (Figure 3C).
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Figure 3. Effects of different irradiations (white light and UV-A) on the concentration of scytonemin (A) and
mycosporine-like amino acids: 309 nm (B), 310 nm (C), and 323 nm (D) in the terrestrial cyanobacteria strains

analyzed. Distinct letters represent significant differences. Font: Gama et al. (2024).
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Figure 4. Effects of different irradiations (white light and UV-A) on the concentration of mycosporine-like
amino acids: 325 nm (A), 326 nm (B), 330 nm (C), and 332 nm (D) in the terrestrial cyanobacteria strains

analyzed. Font: Gama et al. (2024).

Discussion

The current investigation aimed to assess
the capacity of six terrestrial cyanobacterial strains
isolated from the Brazilian Atlantic Forest to
produce sunscreen  and  photopigments.
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Carotenoids, a critical pigment in photosynthesis
responsible for light capture, play a crucial role in
photoprotection (Fabrowska et al., 2018). It is
noted that prolonged exposure to UV-B radiation
has been associated with decreased Chlorophyll a
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content and increased total carotenoid levels in
cyanobacteria, possibly due to UV-B-induced
damage to photosynthetic pigments, resulting in
reduced photosynthetic rates (Kannaujiya & Sinha,
2017; Pandey et al., 2020). This pattern is reflected
in the data from our study, as indicated by the
notably lower Chlorophyll a concentration
compared to carotenoids (Figure 1AB).

The strains exposed to UV-A radiation
exhibited an increase in carotenoid concentration,
consistent with the typical response of
photosynthetic organisms to heightened light
exposure. Exposure to UV-A radiation may
produce secondary carotenoids, which are more
effective antioxidants than primary carotenoids.
These have potential applications in cosmetics,
nutrition, and aquaculture (Cezare-Gomes et al.,
2019; Novoveska et al., 2019).

Among the six strains, only Aphanothece
sp. (CCIBt 3609) and Plectolyngbya sp. (CCAPE
79) displayed a significant concentration of the
yellow-brown pigment scytonemin, attributed to
their capability to fix atmospheric nitrogen and
synthesize scytonemin as a defense against UV
radiation (Kokabi et al., 2019; Nowruzi et al.,
2020). Notably, the production of scytonemin is
known to increase in response to UV-A radiation
and temperature fluctuations (Abed et al., 2011;
Tamre & Fournier 2022), providing a shielding
effect against UV-A radiation (Gao et al., 2021).
The findings regarding Plectolyngbya sp. (CCAPE
79) are particularly noteworthy, as this genus is
relatively understudied in its capacity to produce
bioactive metabolites. The accumulation of
scytonemin in Plectolyngbya strains following
UV-A exposure indicates their potential for
pharmaceutical applications (Orellana et al., 2020).

In contrast, the analysis revealed no
significant concentration of mycosporine-like
amino acids (MAAs) across all strains studied.
Although MAAs are known for their UV-shielding
properties, this study's findings suggest that their
biosynthesis was not notably triggered by the UV-
A radiation employed, raising questions about their
production under standard culture conditions. This
aligns with prior investigations that have
demonstrated the potential for MAAs production in
the absence of UV radiation while stressing the role
of UV stress in enhancing their synthesis (Nazifi et
al., 2015; Singh et al., 2023). Mansouri &
Talebizadeh (2017) also proposed broader
functional roles for MAAs beyond UV protection.
This study's lack of MAA production may be
related to the specific UV wavelength, as these
compounds are typically associated with UV-B
irradiation.

Gama, W.A.; Souza, G.J.S.; Nascimento, L.C.B.

Conclusion

The dynamic responses of cyanobacterial
photopigments to different light conditions
highlight the significant impact of UV-A radiation
on scytonemin production in select strains. UV-A
irradiation significantly enhanced the production of
the photoprotective pigment scytonemin in two
tested strains, Aphanothece sp. CCIBt 3609 and
Plectolyngbya sp. CCAPE 79. None of the strains
showed significant differences in mycosporine-like
amino acid (MAA) production between the control
and treatment conditions at any wavelength. Also,
carotenoids were consistently produced across all
treatments, with no statistical difference.
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