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A B S T R A C T 

Using a correct estimate of reference evapotranspiration (ETo) is fundamental for 

dimensioning the replacement of the irrigation blade in irrigated crops and 

contributing to the correct use of water resources without compromising agricultural 

productivity. Despite this, studies that relate the adequacy of certain probabilistic 

models to reference evapotranspiration are still scarce. This study aimed to adjust 

and compare different probabilistic models to evapotranspiration data and estimate 

probable evapotranspiration at various probability levels in the municipalities of 

Petrolina-PE and Juazeiro-BA. Daily ETo data captured by meteorological stations 

of the Federal University of the São Francisco Valley (UNIVASF) in Petrolina, PE, 

and Juazeiro, BA, were used. The tested distributions were Gamma, Weibull, Log-

Normal, Beta, Normal, Log-Logistic, and Exponentiated Log-Logistic. The 

comparison of distributions employed the Akaike information criterion (AIC), the 

Bayesian information criterion (BIC), and the likelihood ratio test. The Normal, 

Exponentiated Log-Logistic, and Weibull distributions showed the best fit. They 

were consequently the most suitable for modeling reference evapotranspiration and 

making estimates for different probability levels in Petrolina-PE and Juazeiro-BA. In 

both municipalities, October emerged as the month with the highest probable water 

demand across all probability levels 

Keywords: Irrigation, dimensioning, probability, water consumption, semiarid. 

 

R E S U M O 

A utilização de uma estimação correta da evapotranspiração de referência (ETo) é 

fundamental para dimensionar a reposição da lâmina de irrigação nos cultivos 

irrigados, além de contribuir para o uso correto dos recursos hídricos e não 

comprometer a produtividade agrícola. Apesar disso, ainda são escassos os estudos 

que relacionam a adequação de determinados modelos probabilísticos à 

evapotranspiração de referência. O estudo objetivou ajustar e comparar diferentes 

modelos probabilísticos a dados de evapotranspiração e estimar em diferentes níveis 

de probabilidade a evapotranspiração provável nos municípios de Petrolina-PE e 

Juazeiro-BA. Foram utilizados dados diários de ETo captados pelas estações 

meteorológicas da Universidade Federal do Vale do São Francisco (UNIVASF) em 

Petrolina, PE e Juazeiro, BA. As distribuições testadas foram a Gama, Weibull, Log-

Normal, Beta, Normal, Log-Logística e Log-Logística Exponenciada. A comparação 

das distribuições utilizou do critério de informação de Akaike (AIC) e o critério 

Bayesiano (BIC), assim como o teste da razão de verossimilhanças. As distribuições 
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Normal, Log-Logística Exponenciada e Weibull apresentaram os melhores 

resultados de aderência, e consequentemente foram as mais adequadas para modelar 

a evapotranspiração de referência e fazer estimativas para diferentes níveis de 

probabilidade em Petrolina-PE e em Juazeiro-BA. Em ambos os municípios, outubro 

se apresentou como o mês com maior demanda hídrica provável em todos os níveis 

de probabilidade. 

Palavras-Chave: Irrigação, dimensionamento, probabilidade, consumo hídrico, 

semiárido. 

Introdução 

A evapotranspiração é um importante 

fenômeno de transformação física, fundamental 

para a produção vegetal e constitui uma das 

principais variáveis agrometeorológicas, visto que 

na agricultura irrigada, seu conhecimento 

possibilita uma estimativa das necessidades 

hídricas das culturas, tal como o manejo 

sustentável e racional dos recursos hídricos 

(Carvalho & Oliveira, 2012; Ababaei, 2014; Lima 

et al., 2020). A evapotranspiração é o processo que 

consiste na transferência da água da planta e do 

solo para a atmosfera; por essa razão, apresenta 

uma fundamental importância para o 

dimensionamento e o manejo dos mais diversos 

sistemas de irrigação (Oliveira et al., 2017). 

Ao visar um correto dimensionamento para 

os sistemas de irrigação, é preciso levar em conta a 

demanda hídrica das culturas a serem irrigadas, 

principalmente o seu período máximo. Neste 

contexto, em razão da dispersão apresentada pelos 

valores estimados da evapotranspiração, torna-se 

então necessário realizar uma análise da 

distribuição de frequência, dado que alguns dos 

critérios para um correto dimensionamento de 

sistemas de irrigação levam em consideração o 

nível da probabilidade de ocorrência da 

precipitação e da evapotranspiração. 

Neste sentido, recomenda-se analisar a 

probabilidade de incidência para os valores 

históricos de ETo, visando o dimensionamento de 

irrigação (Saad et al., 2002; Back, 2007; Assis et 

al., 2014). Para isso, a escolha do nível de 

probabilidade utilizado deve basear-se em uma 

análise dos aspectos econômicos relacionados, 

levando em consideração os prejuízos vinculados à 

redução da qualidade e da quantidade da produção, 

decorrentes da eficiência hídrica, e o aumento dos 

custos do sistema de irrigação para satisfazer os 

níveis mais elevados de probabilidade. 

Para a maior parcela das regiões irrigadas 

é indicado um intervalo entre 75% e 80% dos 

níveis de probabilidade, sendo economicamente 

inviável o uso de probabilidades que ultrapassem 

90%, ainda que em condições semiáridas como os 

presentes no Nordeste Brasileiro, que embora 

apresente um baixo regime de precipitação, possui 

nos primeiros meses do ano épocas chuvosas 

(Doorenbos & Pruitt, 1997; Santiago et al., 2017). 

Considerando as culturas que apresentem uma 

grande sensibilidade para com o déficit hídrico e 

que apresentem um alto valor econômico, pode ser 

utilizado, no dimensionamento, um nível de 90%, 

visto que, neste caso, pode haver grandes prejuízos 

resultantes de uma produção reduzida em 

decorrência do déficit hídrico. 

O estudo objetivou ajustar e comparar 

diferentes modelos probabilísticos a dados de 

evapotranspiração e estimar em diferentes níveis de 

probabilidade a evapotranspiração provável para os 

municípios de Juazeiro, BA e Petrolina, PE. 

 

Material e Métodos 

O presente estudo utilizou dados diários de 

evapotranspiração de referência (ETo, em mm 

dia⁻¹), no período de 2016 a 2023, obtidos por meio 

das estações meteorológicas automáticas da 

Universidade Federal do Vale do São Francisco 

(UNIVASF). As estações estão localizadas nos 

campi de Juazeiro, BA (latitude: 09º26’56"S, 

longitude: 40º31’27"W, altitude: 356m) e 

Petrolina, PE (latitude: 09º19’28"S, longitude: 

40º33’34"W, altitude: 393m), ambas inseridas no 

Submédio do Vale do São Francisco, região 

caracterizada por clima semiárido (classificação 

BSwh segundo Köppen), com precipitação anual 

inferior a 550 mm e estação chuvosa concentrada 

entre novembro e abril. 

As distribuições de probabilidade 

candidatas a modelarem a ETo foram: Gama (G), 

Weibull (W), Log-Normal (LN), Beta (B), Normal 

(N), Log-Logística (LL) e Log-Logística 

Exponenciada (LLE). As respectivas funções 

derivadas de probabilidade estão apresentadas nas 

Equações 1 a 7.  

 

𝑓𝐺(𝑥) =
1

βαΓ(α)
𝑥α−1𝑒

−
𝑥

β; 𝑥 > 0              Eq. (1) 

 

𝑓𝑊(𝑥) =
α

βα 𝑥α−1𝑒
(−

𝑥

β
)

α

; 𝑥 > 0               Eq. (2) 

 

𝑓𝐿𝑁(𝑥) =
1

𝑥σ√2π
𝑒

−
1

2
(

log 𝑥−μ

σ
)

2

; 𝑥 > 0         Eq. (3) 

 

𝑓𝐵(𝑥) =
Γ(α+β)

Γ(α)𝑟(β)
𝑥α−1(1 − 𝑥)β−1; 0 < 𝑥 < 1 Eq. (4) 
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Eq. (7) 

 

Nas Equações 1-7, a variável x representa 

a evapotranspiração de referência (mm dia-1); os 

parâmetros α; β; δ; e σ, são todos positivos e 

 . A escolha destes modelos probabilísticos 

fundamenta-se em aplicações anteriores presentes 

na literatura, especialmente em estudos 

agrometeorológicos ou hidrológicos (Mamun et al., 

2010; Aragão et al., 2013; Silva et al., 2015; Passos 

et al., 2017; Surendran & Tota-Maharaj, 2018; 

Alcântara et al., 2019; Santiago et al., 2021). 

A avaliação da adequabilidade dos 

modelos aos dados foi realizada por meio de testes 

de aderência. Inicialmente, aplicou-se o teste de 

Kolmogorov-Smirnov (KS) utilizando a mesma 

amostra empregada para a estimação dos 

parâmetros. Embora tal prática eleve 

artificialmente a taxa de erro tipo II (Blain, 2014), 

essa escolha foi intencional, a fim de ilustrar os 

efeitos dessa limitação frequentemente ignorada na 

literatura. Visando um maior rigor metodológico, 

foram aplicados dois testes mais sensíveis nas 

caudas das distribuições e considerados mais 

robustos que o KS em sua forma original, sendo 

eles o teste de Anderson-Darling (AD) e o de 

Cramér-von Mises (CV), com estatísticas 

modificadas A* e W*, respectivamente, propostas 

por Chen & Balakrishnan (1995). Todos os testes 

de aderência foram aplicados considerando-se uma 

probabilidade de erro tipo I de 5%. As análises 

foram realizadas no software Stata MP 16.1, sendo 

os testes AD e CV aplicados por meio do programa 

goodfittest, desenvolvido no ambiente Stata.  

 A seleção dos modelos com melhor 

desempenho em cada mês foi realizada com base 

no critério de informação de Akaike (AIC) e no 

critério Bayesiano (BIC). Para modelos aninhados 

(como LL e LLE), foi utilizado primeiramente o 

teste da razão de verossimilhanças, seguido pela 

análise dos critérios AIC e BIC. 

Por fim, a evapotranspiração de referência 

provável foi estimada para os níveis probabilísticos 

de 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 

90% e 95% em cada mês, considerando o modelo 

com melhor ajuste (menor AIC e BIC). Para 

indicação de variabilidade ou incerteza associada à 

estas estimativas pontuais, intervalos de confiança 

bootstrap com correção de viés ajustados para 

aceleração (BCa) foram obtidos, considerando 

amostras pseudoaleatórias de tamanho 10.000 em 

cada nível de probabilidade e 1.000 reamostragens 

bootstrap com reposição de tamanho 240 cada. 

 

Resultados e Discussão  

Os gráficos boxplot dos p-valores obtidos 

pelos testes de aderência (Figura 1) permitiram 

observar limitações no uso isolado do teste KS 

quando este é aplicado na mesma amostra usada 

para estimar os parâmetros das distribuições 

testadas. Como esperado, em diversos casos, o KS 

indicou aderência (não rejeição da hipótese nula), 

enquanto os testes alternativos e mais robustos AD 

e CV indicaram o contrário, evidenciando a 

inadequação do KS da forma como foi aplicado. 

Tal contraste confirma o alerta metodológico de 

Blain (2014), segundo o qual o uso do KS (em sua 

versão original e sem ajustes específicos), quando 

aplicado na mesma amostra utilizada para 

estimação de parâmetros, tende a inflacionar a taxa 

de erro tipo II. 
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Figura 1. Boxplot de p-valores obtidos pelos testes de aderência de Kolmogorov-Smirnov (KS), Anderson-

Darling (AD) e Cramér-von Mises (CV) para diferentes distribuições de probabilidade ajustadas às séries 

diárias de evapotranspiração de referência (ETo) em Petrolina–PE e Juazeiro–BA. G = Gama; W = Weibull; 

LN = Log-Normal; B = Beta; N = Normal; LL = Log-Logística; LLE = Log-Logística Exponenciada. Fonte: 

Silva et al. (2025). 
 

Os testes AD e CV mostraram-se mais 

criteriosos e, em geral, apontaram no mesmo 

sentido na identificação das distribuições que 

melhor representavam os dados mensais de ETo, 

apontando, na maioria dos meses e localidades, 

para o bom desempenho das distribuições W e 

LLE. Resultados semelhantes para a LLE foram 

obtidos por Santiago et al. (2021) na mesma região 

de estudo. 

Os bons resultados da distribuição W, 

provavelmente estão relacionados à sua quase 

ausência de assimetria perante os dados de ETo das 

duas localidades (Figura 2), visto que W pode 

apresentar-se aproximadamente simétrica para 

valores de β ≥ 3,6. Comportamento similar 

verificado para a LLE, entretanto, com uma maior 

flexibilidade ocasionada pela presença de um 

parâmetro adicional (δ). 
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Figura 2. Histogramas das frequências da evapotranspiração de referência no município de Petrolina-PE e 

Juazeiro-BA no período de 2016 a 2023. Fonte: Silva et al. (2025). 

 
A Tabela 1 mostra que, pelo teste de 

aderência de KS, todas as distribuições aderiram 

aos dados em pelo menos um mês, o que não se 

verifica quando considerados os demais testes de 

aderência adequadamente usados. Em face destes 

resultados, ficam evidentes os riscos inferenciais 

que se cometem quando se adota um teste de 

aderência de forma equivocada. 

 

Tabela 1. Aderência pelos testes de Kolmogorov-Smirnov, Anderson-Darling e de Cramér-von Mises a uma 

probabilidade máxima de erro tipo I de 5%. Fonte: Silva et al. (2025). 

Local 

Distribuições 

  G W L B N LL LLE 

  Testes de aderência 
Mês KS AD CV KS AD CV KS AD CV KS AD CV KS AD CV KS AD CV KS AD CV 

P
et

ro
li

n
a 

Jan ns ns ns * ns ns ns ns ns ns ns ns * ns ns ns ns ns * * * 

Fev * ns ns * * * ns ns ns * ns ns * ns * * ns ns * * * 

Mar * ns ns * * * * ns ns * ns ns * * * * ns ns * * * 

Abr * ns ns * * * ns ns ns * ns ns * ns ns * ns ns * ns ns 

Mai * ns ns * ns * * ns ns * ns ns * ns * * ns ns * ns ns 

Jun * ns ns * * * * ns ns * ns ns * ns ns * ns ns * * * 

Jul * ns ns * * * * ns ns * ns ns * * * * ns ns * ns ns 

Ago ns ns ns * ns ns ns ns ns ns ns ns ns ns ns * ns ns * * * 

Set * ns ns * ns ns * ns ns * ns ns * * * * ns * * * * 

Out ns ns ns * ns ns ns ns ns ns ns ns * ns ns * ns ns * * * 

Nov ns ns ns * ns ns ns ns ns ns ns ns * ns ns ns ns ns * * * 

Dez ns ns ns * ns ns ns ns ns ns ns ns ns ns ns ns ns ns * * * 

Ju
az

ei
ro

 

Jan ns ns ns * ns ns ns ns ns ns ns ns * ns ns ns ns ns * ns * 

Fev ns ns ns * ns ns ns ns ns ns ns ns * ns ns * ns ns * * * 

Mar ns ns ns ns ns ns ns ns ns ns ns ns * ns ns * ns ns * * * 

Abr * ns ns * * * * ns ns * ns ns * * * * ns ns * * * 

Mai * ns ns * * * ns ns ns * ns ns * * * * ns ns * * * 

Jun * ns ns * * * ns ns ns * ns ns * ns ns * ns ns * * * 

Jul * ns ns * ns * * ns ns * ns ns * ns ns * ns ns * ns ns 

Ago ns ns ns * ns ns ns ns ns ns ns ns ns ns ns ns ns ns * * * 

Set * ns ns * ns ns * ns ns * ns ns * ns ns * ns ns * * * 

Out ns ns ns * ns ns ns ns ns ns ns ns ns ns ns * ns ns * ns * 

Nov ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns * * * 

Dez ns ns ns * ns ns ns ns ns ns ns ns ns ns ns ns ns ns * * * 

G = Gama; W = Weibull; LN = Log-Normal; B = Beta; N = Normal; LL = Log-Logística; LLE = Log-Logística 

Exponenciada; KS = Teste de aderência de Kolmogorov-Smirnov; AD = Teste de aderência de Anderson-

Darling; CV = Teste de Aderência de Cramér-von Mises; ns = Não Aderiu; * = Aderiu. 

 

Como é conhecido, o teste KS clássico 

pressupõe que a distribuição teórica seja 

completamente especificada (Massey, 1951; 

Lilliefors, 1967; Stephens, 1974). Quando essa 

suposição é violada, caso que acontece quando 

aplicamos o KS na mesma amostra usada para 

estimar os parâmetros do modelo, a distribuição da 

estatística de teste muda. Diante disso, o p-valor 

gerado pelo teste não é mais válido e a chance de 

não rejeição da hipótese nula torna-se 
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artificialmente alta. Assim, muitos dos resultados 

são falsas aderências, ou seja, superestimação da 

qualidade do ajuste. Isso compromete toda a 

conclusão sobre qual distribuição é mais adequada. 

Superado o uso inadequado do teste KS, e 

levando em conta os testes AD e CV, verifica-se 

que a distribuição LLE foi a que mais apresentou 

aderências na maioria dos meses em ambas as 

cidades, seguida das distribuições W e N (Figura 1 

e Tabela 1). O comportamento semelhante dessas 

distribuições em ambos os municípios estudados 

provavelmente se deve à proximidade geográfica 

entre eles, visto que são vizinhos e separados 

apenas pelo rio São Francisco; consequentemente, 

compartilham condições atmosféricas 

semelhantes. 

Em relação à seleção de modelos com 

melhor desempenho em cada mês e cidade (Tabela 

2), é importante destacar que os critérios AIC e BIC 

respondem de forma distinta ao trade-off entre 

ajuste e parcimônia. O AIC, por penalizar menos a 

complexidade, tende a favorecer modelos mais 

flexíveis (como LLE), enquanto o BIC, mais 

conservador, prioriza modelos com menos 

parâmetros, a exemplo do modelo W. Assim, caso 

os valores de AIC para a LLE e W tivessem sido os 

mesmos em fevereiro em Petrolina-PE, a escolha 

da melhor distribuição não teria sido tal como foi. 

 

Tabela 2. Seleção de modelos probabilísticos para dados mensais de evapotranspiração de referência em 

Petrolina-PE e Juazeiro-BA, utilizando os critérios de informação de Akaike (AIC), Bayesiano (BIC) e no 

Teste da Razão de Verossimilhança (LR). Fonte: Silva et al. (2025). 

Local 

    Distribuições     

                      Modelos aninhados     

  G W LN B N LL    vs    LLE     

  Estatísticas de testes para seleção dos modelos probabilísticos 
Mês AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC LR p-valor 

P
et

ro
li

n
a 

Jan  - -  855 862  - -    -   -  859 866  -  -  832 842 -  - 

Fev 760 766 711 718  -  - -1315 -1308 715 722 760 767 710 720 52 <0,001 

Mar 734 741 715 722 752 759 -1551 -1544 717 725 745 752 725 735 22 <0,001 

Abr 633 640 596 603  -  - -1578 -1571 647 615 640 647 599 609 43 <0,001 

Mai 597 604 571 578 617 624 -1689 -1681 574 581 597 - - - - - 

Jun 482 489 463 470 492 499 -1730 -1723 468 475 490 497 468 478 24 <0,001 

Jul 499 506 497 504 505 512 -1786 -1779 493 500 511 518 505 516 7,2 <0,001 

Ago  -  - 495 502  -  -   -   -  - -  520 527 487 498 35 <0,001 

Set 542 549 513 520 562 569 -1670 -1663 516 523 520 527 509 520 12 <0,001 

Out  -  - 591 598 -   -  -  - 618 625 629 636 589 600 41 <0,001 

Nov  -  - 806 813  -  -  -  - 813 820  -  - 783 793  - - 

Dez  - -  830 837  -  -  -  -      -  -  802 813  -  -  

Jan  -  -  821 828  -   -     -   -  829 836  -  - 795 805  -   - 

Ju
az

ei
ro

 

Fev  - - 713 720  -   -     -  - 719 725 757 764 710 721 48 <0,001 

Mar  -  -  763 770  -   -     -   -  734 742 749 756 714 724 37 <0,001 

Abr 595 602 565 572 613 620 -1616 -1609 572 579 592 599 571 581 23 <0,001 

Mai 550 557 529 536  -  -  -1735 -1728 530 537 549 556 536 546 15 <0,001 

Jun 439 446 423 430  -  -  -1772 -1765 428 428 449 456 429 439 22 <0,001 

Jul 437 444 428 435 442 449 -1829 -1822 430 437 451 458 440 451 12 <0,001 

Ago  - - 489 496  -   -    -    -  -  -  -  - 480 491 -  - 

Set 532 539 524 531 544 550 -1680 -1673 516 516 518 525 508 518 12 <0,001 

Out  - -  533 540  -  -    -    -  -  - 556 563 529 540 29 <0,001 

Nov  - - - -   -  -   -   -  -  -  -  - 712 722  -  - 

Dez  -  -  757 764 - -    -    -   -   -  -  - 736 746  -  - 

G = Gama; W = Weibull; LN = Log-Normal; B = Beta; N = Normal; LL = Log-Logística; LLE = Log-Logística 

Exponenciada; – = Modelo não selecionado por nenhum critério (AIC, BIC) ou o teste da razão de 

verossimilhança não foi aplicável. 

 

Essas divergências entre AIC e BIC são 

previsas por Burnham & Anderson (1998), que 

defendem o uso combinado de AIC e BIC para uma 

avaliação mais equilibrada dos ajustes conferidos 

em estudos para seleção de modelos.  

A comparação entre LL e LLE por meio do 

Teste da Razão de Verossimilhança (LR) mostrou 

valores altamente significativos (p < 0,001) em 

quase todos os meses, confirmando a superioridade 

da LLE em relação à LL (Tabela 2). 

A análise dos critérios de informação de 

Akaike, Bayesiano e do teste da razão de 

verossimilhança (Tabela 2) revela que as 

distribuições W e LLE foram, majoritariamente, as 

mais adequadas para modelar os dados mensais de 

ETo em Juazeiro-BA e Petrolina-PE ao longo do 
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ano. Essa predominância pode ser visualmente 

observada na Tabela 2, pelos valores em negrito 

(indicando as menores penalizações dos critérios 

de informação). 

A seleção da distribuição LLE, de agosto a 

março em Juazeiro-BA e de agosto a fevereiro em 

Petrolina-PE, pode ser interpretada como um 

indicativo da flexibilidade extra do modelo LLE, 

que generaliza a LL ao incorporar um parâmetro 

adicional de forma. Essa característica confere ao 

modelo maior capacidade de ajustar-se aos dados 

mais complexos, como discutido por Kariuki et al. 

(2024), o que é claramente observado neste estudo, 

uma vez que aqueles períodos nos quais a LLE 

apresentou um melhor desempenho são os de 

máxima variabilidade na ETo (Tabela 3), em 

contraste com os meses em que W foi selecionada. 

De acordo com Lima & Cordeiro (2017), a 

distribuição LLE assume várias formas, 

dependendo dos valores dos parâmetros, em razão 

disso ela é muito mais flexível do que a distribuição 

LL, ou seja, o parâmetro de forma adicional 

permite um alto grau de flexibilidade, assim o 

modelo pode ser muito útil em muitas situações 

práticas para modelar conjuntos de dados positivos, 

como é o caso da ETo.

 

Tabela 3. Parâmetros das distribuições Normal, Log-Logística Exponenciada e Weibull e a média mensal da 

evapotranspiração de referência (ETo), temperatura e radiação global. Fonte: Silva et al. (2025). 

α, µ, σ, β e δ são parâmetro das distribuições de probabilidade estudadas.  

 

A adequação das distribuições de 

probabilidade depende não somente da qualidade 

dos ajustes, mas também da capacidade de seus 

parâmetros refletirem relações significativas com 

as características do fenômeno analisado (Silva et 

al., 2023). 

A maior adequação das distribuições W e 

LLE nos respectivos meses está intimamente 

relacionada às características climáticas da região 

analisada. De agosto a outubro, prevalecem 

condições secas e elevadas taxas médias de 

evapotranspiração de referência (ETo); o período 

de novembro a fevereiro (primavera-verão) por sua 

vez, é caracterizado por maior potencial chuvoso, 

além de registrar os mais altos índices de 

temperatura média do ar e radiação solar em ambas 

as cidades (Tabela 3). 

 Nesse contexto, o intervalo de agosto a 

fevereiro apresenta maior disponibilidade de calor 

sensível, favorecendo intensamente o processo de 

evapotranspiração, especialmente nos meses secos 

(Santiago et al., 2021). Tal comportamento 

Cidade 
Estimativas ETo 

Temp. 

Média 

Radiação 

Global 

Mês α | µ β | σ δ (mm) (ºC) (MJ/m²) 

Petrolina 

Jan 6,41 30,12 0,08 4,6 27,0 23,0 

Fev 5,53 15,04 0,20 4,3 26,9 22,8 

Mar 4,75 4,65 - 4,3 27,1 22,1 

Abr 4,72 4,41 - 4,1 26,8 20,2 

Mai 5,77 4,15 - 3,8 25,8 18,0 

Jun 6,78 3,99 - 3,7 24,4 17,4 

Jul 3,98 0,65 - 4,0 23,8 18,2 

Ago 5,17 24,46 0,29 4,6 24,6 21,1 

Set 5,59 18,25 0,49 5,2 26,1 23,6 

Out 6,23 22,71 0,31 5,6 27,7 25,4 

Nov 6,46 24,79 0,12 4,9 27,6 23,5 

Dez 6,36 28,56 0,11 4,7 27,3 23,3 

Juazeiro 

Jan 6,20 20,41 0,16 4,9 27,8 23,3 

Fev 5,67 14,05 0,25 4,6 28,0 23,3 

Mar 5,40 16,51 0,25 4,5 27,8 22,5 

Abr 6,43 4,69 - 4,4 27,7 21,2 

Mai 6,53 4,31 - 4,0 26,4 18,7 

Jun 7,59 4,09 - 3,8 25,0 17,9 

Jul 8,08 4,29 - 4,0 24,5 18,6 

Ago 5,20 27,05 0,25 4,6 25,2 21,6 

Set 5,58 18,19 0,51 5,2 26,8 23,8 

Out 6,12 22,66 0,36 5,6 28,6 25,4 

Nov 6,18 24,86 0,15 5,0 28,2 23,9 

Dez 6,17 25,55 0,14 4,9 28,1 23,8 
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contribui para que a distribuição LLE apresente 

melhor desempenho, devido à presença de um 

segundo parâmetro de forma (δ), que confere maior 

flexibilidade na modelagem de assimetrias 

(Mendoza, 2012). 

 Por outro lado, de março a julho, que 

corresponde ao final do período chuvoso, as 

condições de energia disponível (temperatura e 

radiação, além de substancial volume de água no 

solo) para a evapotranspiração são mais 

moderadas, resultando em valores de ETo mais 

uniformes, embora ainda com leve assimetria. 

Nesses meses, o comportamento dos dados 

favoreceu um melhor ajuste da distribuição 

Weibull, cuja forma sutilmente assimétrica (β > 

3,6) (Tabela 3) se mostrou suficiente para 

representar a variabilidade observada. 

A Figura 3 apresenta as estimativas 

probabilísticas da ETo para diferentes níveis de 

probabilidade. Observa-se que os valores médios 

de ETo ocorrem, de forma geral, com 

probabilidade entre 40% e 50%. Isso implica que o 

uso indiscriminado da média de ETo como base 

para o dimensionamento da demanda hídrica de 

culturas pode levar a uma subestimação da real 

necessidade de água, comprometendo a eficiência 

dos sistemas de irrigação e, consequentemente, a 

produtividade agrícola. Santiago et al. (2021) 

destacam que os valores médios de ETo tendem a 

representar probabilidades entre 40% e 50%, e 

Silva et al. (2013) alertam que o uso da média para 

planejamento hídrico não é recomendado em 

função da variabilidade interanual da 

evapotranspiração.

 

 
Figura 3. Estimativas da evapotranspiração de referência (mm.dia⁻¹) em diferentes níveis probabilísticos em 

Petrolina-PE e Juazeiro-BA. Fonte: Silva et al. (2025). 
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Nesse sentido, recomenda-se a utilização 

de percentis superiores, especialmente aqueles com 

75% de probabilidade, como indicado por Saad et 

al. (2002) e Back (2007), os quais são considerados 

mais conservadores e tecnicamente adequados para 

o correto dimensionamento de sistemas de 

irrigação. A adoção de percentis como o de 95%, 

no entanto, deve ser contextualizada: embora 

represente um cenário mais crítico e seguro, 

principalmente para culturas de alto valor 

econômico, elevada sensibilidade hídrica ou em 

situações de escassez hídrica, pode implicar em 

superdimensionamento e aumento de custos, o que 

o torna economicamente inviável como padrão 

generalizado (Doorenbos & Pruitt, 1977).  

Assim, para o planejamento hídrico em 

condições normais, recomenda-se o uso de 

percentis entre 75% e 85%, reservando percentis 

superiores, como 90% e 95%, para análises de risco 

ou planejamento de culturas com exigências 

específicas. A avaliação de outubro, como o mês de 

maior demanda hídrica (Tabela 4), reforçou essa 

perspectiva. Considerando probabilidades de 70%, 

80% e 95%, a ETo estimada para esse mês pode 

alcançar valores aproximados de até 6,0 mm.dia⁻¹, 

6,2 mm.dia⁻¹ e 6,7 mm.dia⁻¹, respectivamente, nos 

municípios de Petrolina-PE e Juazeiro-BA. 

Portanto, o planejamento para esse período deve 

considerar a elevada demanda energética, refletida 

no aumento da ETo, coincidente com baixos 

índices pluviométricos (Silva et al., 2015). Barros 

et al. (2024) observaram em Juazeiro-BA que, de 

agosto a outubro, a baixa disponibilidade hídrica 

associada aos altos níveis de radiação e elevadas 

temperaturas promoveu um incremento nos valores 

da evaporação, os quais atingiram médias de até 

8 mm.dia⁻¹. 

Em resumo, esse estudo mostrou que as 

distribuições LLE, W e N apresentaram os 

melhores desempenhos em termos de ajuste, com 

superioridade da distribuição LLE em representar a 

variabilidade da ETo de agosto a fevereiro-março e 

desempenho consistente da distribuição W nos 

demais meses. Além disso, esses achados reforçam 

a importância de empregar critérios metodológicos 

adequados, não apenas na seleção de modelos com 

base em penalizações de complexidade (como AIC 

e BIC), mas também no uso criterioso dos testes de 

aderência. O contraste entre os resultados dos testes 

KS e os mais robustos AD e CV evidencia que o 

uso inadequado do KS, sobretudo quando aplicado 

na mesma amostra utilizada para estimação dos 

parâmetros, pode levar a conclusões equivocadas 

sobre a qualidade do ajuste. Assim, o rigor 

metodológico adotado neste estudo contribuiu para 

evitar inferências frágeis e aumentar a 

confiabilidade das recomendações para o 

dimensionamento de sistemas de irrigação. 

É importante destacar que os resultados 

apresentados se referem a dois municípios 

limítrofes, com características climáticas similares, 

ambos situados no Vale do São Francisco. Assim, 

embora os resultados sejam relevantes para essa 

região específica, sua extrapolação para outras 

áreas do semiárido brasileiro deve ser feita com 

cautela. Fatores como radiação solar, temperatura, 

precipitação, velocidade do vento, umidade 

relativa do ar e déficit de pressão de vapor, além de 

padrões regionais de circulação atmosférica, 

podem alterar significativamente o regime de ETo 

em outras localidades do semiárido. Recomenda-

se, portanto, que estudos semelhantes sejam 

realizados em diferentes regiões do semiárido para 

validar e ampliar a aplicabilidade dos resultados 

encontrados neste estudo. 
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Tabela 4. Estimativa probabilística da ETo nos níveis de 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% e 95% e intervalos de confiança bootstrap, com correção 

de viés ajustada para aceleração. Fonte: Silva et al. (2025).  
    Nível de probabilidade 

Local Mês 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 

P
et

ro
li

n
a 

Jan 2,59 (2,53 - 2,65) 3,40 (3,35 - 3,45) 3,98 (3,93 - 4,04) 4,50 (4,46 - 4,54) 4,88 (4,84 - 4,92) 5,25 (5,21 - 5,28) 5,57 (5,55 - 5,60) 5,88 (5,85 - 5,90) 6,21 (6,19 - 6,24) 6,44 (6,41 - 6,46) 

Fev 2,64 (2,58 - 2,69) 3,30 (3,26 - 3,34) 3,75 (3,71 - 3,79) 4,14 (4,12 - 4,17) 4,44 (4,40 - 4,47) 4,72 (4,70 - 4,75) 5,00 (4,97 - 5,02) 5,28 (5,26 - 5,31) 5,68 (5,64 - 5,71) 6,00 (5,96 - 6,05) 

Mar 2,91 (2,87 - 2,95) 3,41 (3,38 - 3,44) 3,75 (3,72 - 3,78) 4,07 (4,04 - 4,09) 4,32 (4,29 - 4,34) 4,58 (4,55 - 4,60) 4,84 (4,82 - 4,87) 5,14 (5,12 - 5,16) 5,54 (5,51 - 5,57) 5,85 (5,82 - 5,89) 

Abr 2,98 (2,95 - 3,01) 3,40 (3,37 - 3,42) 3,68 (3,65 - 3,70) 3,94 (3,92 - 3,95) 4,13 (4,11 - 4,16) 4,34 (4,32 - 4,36) 4,55 (4,53 - 4,57) 4,78 (4,76 - 4,80) 5,09 (5,07 - 5,12) 5,33 (5,30 - 5,36) 

Mai 2,82 (2,79 - 2,85) 3,21 (3,19 - 3,23) 3,48 (3,45 - 3,50) 3,72 (3,70 - 3,74) 3,90 (3,88 - 3,92) 4,10 (4,08 - 4,12) 4,29 (4,28 - 4,31) 4,51 (4,49 - 4,52) 4,80 (4,77 - 4,82) 5,02 (4,99 - 5,04) 

Jun 2,88 (2,85 - 2,91) 3,21 (3,19 - 3,23) 3,44 (3,42 - 3,46) 3,64 (3,62 - 3,65) 3,79 (3,78 - 3,81) 3,95 (3,94 - 3,97) 4,11 (4,10 - 4,13) 4,29 (4,27 - 4,30) 4,52 (4,50 - 4,54) 4,70 (4,68 - 4,72) 

Jul 3,07 (3,04 - 3,10) 3,42 (3,40 - 3,44) 3,66 (3,64 - 3,68) 3,87 (3,86 - 3,89) 4,03 (4,02 - 4,05) 4,20 (4,19 - 4,22) 4,37 (4,35 - 4,39) 4,55 (4,54 - 4,57) 4,80 (4,78 - 4,82) 4,98 (4,96 - 5,00) 

Ago 3,73 (3,70 - 3,76) 4,12 (4,10 - 4,14) 4,36 (4,34 - 4,38) 4,56 (4,55 - 4,58) 4,71 (4,69 - 4,72) 4,85 (4,84 - 4,86) 4,99 (4,98 - 5,00) 5,14 (5,12 - 5,15) 5,35 (5,33 - 5,36) 5,52 (5,50 - 5,55) 

Set 4,35 (4,31 - 4,38) 4,70 (4,68 - 4,72) 4,93 (4,91 - 4,94) 5,12 (5,10 - 5,14) 5,27 (5,25 - 5,28) 5,42 (5,41 - 5,44) 5,58 (5,57 - 5,60) 5,77 (5,76 - 5,79) 6,05 (6,03 - 6,08) 6,31 (6,28 - 6,34) 

Out 4,50 (4,46 - 4,54) 4,97 (4,94 - 4,99) 5,26 (5,23 - 5,28) 5,50 (5,49 - 5,52) 5,68 (5,66 - 5,70) 5,86 (5,84 - 5,88) 6,03 (6,01 - 6,05) 6,22 (6,20 - 6,23) 6,49 (6,46 - 6,51) 6,72 (6,69 - 6,75) 

Nov 3,05 (2,98 - 3,11) 3,82 (3,78 - 3,87) 4,36 (4,31 - 4,40) 4,82 (4,78 - 4,85) 5,15 (5,12 - 5,19) 5,48 (5,45 - 5,51) 5,77 (5,74 - 5,79) 6,04 (6,02 - 6,07) 6,38 (6,35 - 6,41) 6,63 (6,60 - 6,66) 

Dez 2,86 (2,79 - 2,92) 3,64 (3,59 - 3,69) 4,18 (4,13 - 4,23) 4,65 (4,62 - 4,69) 5,00 (4,96 - 5,04) 5,33 (5,30 - 5,36) 5,63 (5,60 - 5,65) 5,90 (5,88 - 5,92) 6,22 (6,20 - 6,25) 6,45 (6,42 - 6,47) 

Ju
az

ei
ro

 

Jan 3,09 (3,03 - 3,15) 3,81 (3,77 - 3,85) 4,30 (4,26 - 4,35) 4,72 (4,69 - 4,76) 5,03 (5,00 - 5,06) 5,33 (5,30 - 5,36) 5,60 (5,58 - 5,62) 5,87 (5,85 - 5,89) 6,22 (6,19 - 6,25) 6,50 (6,46 - 6,53) 

Fev 2,98 (2,93 - 3,03) 3,62 (3,58 - 3,66) 4,05 (4,01 - 4,09) 4,42 (4,39 - 4,45) 4,69 (4,66 - 4,72) 4,97 (4,94 - 5,00) 5,24 (5,21 - 5,26) 5,53 (5,50 - 5,55) 5,94 (5,90 - 5,97) 6,29 (6,25 - 6,34) 

Mar 3,15 (3,10 - 3,20) 3,69 (3,66 - 3,72) 4,04 (4,01 - 4,08) 4,35 (4,33 - 4,37) 4,58 (4,55 - 4,60) 4,81 (4,79 - 4,83) 5,04 (5,02 - 5,06) 5,29 (5,27 - 5,31) 5,67 (5,64 - 5,70) 6,00 (5,96 - 6,04) 

Abr 3,32 (3,28 - 3,35) 3,73 (3,70 - 3,75) 4,00 (3,98 - 4,03) 4,25 (4,23 - 4,27) 4,44 (4,42 - 4,46) 4,64 (4,62 - 4,66) 4,83 (4,82 - 4,85) 5,05 (5,03 - 5,07) 5,34 (5,32 - 5,36) 5,56 (5,53 - 5,59) 

Mai 3,06 (3,02 - 3,09) 3,43 (3,40 - 3,45) 3,68 (3,65 - 3,70) 3,90 (3,88 - 3,92) 4,07 (4,05 - 4,09) 4,25 (4,23 - 4,27) 4,43 (4,41 - 4,45) 4,62 (4,61 - 4,64) 4,89 (4,86 - 4,91) 5,08 (5,06 - 5,11) 

Jun 3,04 (3,02 - 3,07) 3,36 (3,34 - 3,38) 3,57 (3,55 - 3,58) 3,75 (3,74 - 3,77) 3,89 (3,88 - 3,91) 4,04 (4,02 - 4,06) 4,19 (4,17 - 4,20) 4,34 (4,33 - 4,36) 4,55 (4,54 - 4,57) 4,71 (4,69 - 4,73) 

Jul 3,25 (3,22 - 3,28) 3,57 (3,55 - 3,59) 3,78 (3,76 - 3,79) 3,96 (3,95 - 3,97) 4,10 (4,09 - 4,12) 4,25 (4,23 - 4,26) 4,39 (4,38 - 4,40) 4,55 (4,53 - 4,56) 4,75 (4,74 - 4,77) 4,91 (4,89 - 4,92) 

Ago 3,72 (3,69 - 3,76) 4,12 (4,10 - 4,14) 4,37 (4,34 - 4,39) 4,57 (4,55 - 4,58) 4,71 (4,70 - 4,73) 4,86 (4,84 - 4,87) 4,99 (4,98 - 5,00) 5,13 (5,12 - 5,14) 5,33 (5,31 - 5,34) 5,49 (5,47 - 5,51) 

Set 4,36 (4,33 - 4,39) 4,71 (4,69 - 4,73) 4,93 (4,91 - 4,95) 5,12 (5,11 - 5,14) 5,27 (5,25 - 5,28) 5,42 (5,41 - 5,44) 5,58 (5,57 - 5,60) 5,77 (5,75 - 5,78) 6,05 (6,03 - 6,08) 6,31 (6,28 - 6,34) 

Out 4,68 (4,65 - 4,72) 5,07 (5,05 - 5,10) 5,32 (5,30 - 5,34) 5,52 (5,51 - 5,54) 5,67 (5,66 - 5,69) 5,83 (5,81 - 5,85) 5,99 (5,97 - 6,00) 6,16 (6,15 - 6,17) 6,42 (6,40 - 6,44) 6,65 (6,62 - 6,68) 

Nov 3,37 (3,31 - 3,42) 4,04 (4,00 - 4,09) 4,50 (4,46 - 4,53) 4,88 (4,85 - 4,91) 5,15 (5,13 - 5,18) 5,42 (5,39 - 5,44) 5,65 (5,63 - 5,67) 5,89 (5,87 - 5,91) 6,18 (6,16 - 6,21) 6,41 (6,38 - 6,44) 

Dez 3,31 (3,26 - 3,37) 3,99 (3,95 - 4,03) 4,44 (4,41 - 4,48) 4,83 (4,80 - 4,86) 5,11 (5,08 - 5,14) 5,37 (5,35 - 5,40) 5,61 (5,59 - 5,63) 5,85 (5,83 - 5,87) 6,15 (6,13 - 6,18) 6,39 (6,36 - 6,42) 
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Conclusão 

A modelagem probabilística da 

evapotranspiração de referência (ETo) é uma 

ferramenta eficaz para subsidiar o planejamento e 

manejo da irrigação no Submédio do Vale do São 

Francisco. É importante a utilização de critérios 

estatísticos rigorosos e múltiplos testes na seleção 

de modelos probabilísticos.  

 As estimativas de evapotranspiração 

provável em diferentes níveis de probabilidade 

(10% a 95%) demonstraram ser úteis para o 

dimensionamento racional de sistemas de 

irrigação, especialmente em contextos onde a 

escassez hídrica impõe desafios à sustentabilidade 

da produção agrícola. A identificação de outubro 

como o mês de maior demanda hídrica em 

Juazeiro-BA e Petrolina-PE confirma a relevância 

da abordagem probabilística adotada para o manejo 

adaptado às condições climáticas regionais. 

Embora os municípios analisados apresentem 

proximidade geográfica e condições climáticas 

similares, recomenda-se que estudos semelhantes 

sejam replicados em outras áreas do semiárido 

brasileiro, considerando que fatores locais podem 

alterar significativamente o regime de ETo. Essa 

abordagem contribui para uma gestão hídrica mais 

precisa, eficiente e adaptada às particularidades 

ambientais de cada região frente aos desafios 

impostos pelas mudanças climáticas em curso.  
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