BIOINPUTS REVOLUTION BY BRAZILIAN FRUIT PRODUCTION
BIOLOGICAL AGENTS, MECHANISMS, AND MARKET GROWTH
Palavras-chave:
Biological controlResumo
The Brazilian market has seen growing government support for biological inputs—natural or bio-based products used in agriculture. These inputs are becoming key alternatives in Integrated Fruit Production (IFP), promoting sustainability. This study compiles information on bioinput applications in fruit farming, including their main biological agents, mechanisms of action, and market trends in Brazil. Research highlights biostimulants, biofertilizers, biodefenses, and postharvest coatings as major bioinput categories. These products enhance crop growth, improve stress resistance, and support eco-friendly pest and disease management. Their adoption aligns with Brazil’s push for sustainable agriculture, reducing reliance on synthetic chemicals while maintaining productivity. The Brazilian bioinput market is expanding rapidly, driven by demand for higher yields and environmentally safe practices. Technologies based on plant extracts and microorganisms help improve soil health and reduce toxicity risks for workers and ecosystems. Additionally, bioinputs boost the competitiveness of Brazilian fruits in global markets by ensuring high-quality, residue-free produce. Future research should focus on optimizing bioinput efficiency, exploring their effects on different fruit varieties, and refining sustainable practices to enhance crop performance from growth to postharvest. This approach supports Brazil’s agricultural innovation while meeting global sustainability standards.Downloads
Referências
AGÊNCIA Senado. Marco regulatório dos bioinsumos segue para a Câmara. 2023. Avalueted on: https://www12.senado.leg.br/noticias/audios/2023/09/marco-regulatorio-dos-bioinsumos-segue-para-a-camara. Acessed in:13 jun. 2025.
AGRO B. Fungicida Bactericida Serenade®. 2021. Avalueted on: https://www.agro.bayer.com.br/fungicida-serenade. Acessed in:13 jun. 2025.
AGROLINK. Bula Boveril WP PL63. 2023. Avalueted on: https://www.agrolink.com.br/agrolinkfito/produto/boveril-wp-pl63_8090.html. Acessed in:13 jun. 2025.
AJUNA, H. B. et al. The prospect of antimicrobial peptides from Bacillus species with biological control potential against insect pests and diseases of economic importance in agriculture, forestry and fruit tree production. Biotechnology & Biotechnological Equipment, v. 38, n. 1, p. 2312115, 2024. DOI: 10.1080/13102818.2024.2312115.
ALALAF, A. H. Effect of budding date and chemical, organic, and bio-fertilization on budding success of local orange and subsequent growth of the seedlings. 2019. Tese (Doutorado) – Departamento de Horticultura e Paisagismo, Universidade de Mosul, Mosul, Iraque. Avalueted on: https://portal.arid.my/0001-7447/Publications/Details/17460. Acessed in:13 jun. 2025.
ALI, M. et al. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Comprehensive Reviews in Food Science and Food Safety, v. 24, n. 1, e70103, 2025. DOI: 10.1111/1541-4337.13312.
BRASIL. Decreto nº 10.375, de 27 de maio de 2020. Institui o Programa Nacional de Bioinsumos e o Conselho Estratégico do Programa Nacional de Bioinsumos. Diário Oficial da União, Brasília, DF, n. 100, p. 105, 28 maio 2020. Seção 1.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. AGROFIT: Sistema de Agrotóxicos Fitossanitários. Brasília, 2016.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Fomento e Crédito para Bioinsumos. 2023. Avalueted on: https://www.gov.br/agricultura/pt-br/assuntos/inovacao/bioinsumos/o-programa/fomento-e-credito-para-bioinsumos. Acessed in:13 jun. 2025.
BUITRAGO, R. E.; GARCÍA SUAZA, A. F.; GARZÓN RESTREPO, J. E. Exploratory analysis of the determinants of informality in emerging and frontier economies: an institutional approach via PLS SEM. Development Studies Research, v. 11, n. 1, p. 2291004, 2024.
CARDARELLI, M. et al. Foliar applications of a Malvaceae-derived protein hydrolysate and its fractions differentially modulate yield and functional traits of tomato under optimal and suboptimal nitrogen application. Journal of the Science of Food and Agriculture, v. 104, n. 12, p. 7603–7616, 2024. DOI: 10.1002/jsfa.13392.
CASTELLANOS RENGIFO, J. Lineamientos de políticas públicas para la agricultura limpia en la fruticultura: el caso de los pequeños y medianos productores de mora en el Valle del Cauca. 2017. Avalueted on: . Acessed in:13 jun. 2025.
CORRÊA, G. M. et al. Use of bioinputs in sustainable agriculture: trends, challenges and perspectives for reducing the use of agrochemicals. Revista de Gestão Social e Ambiental, v. 19, n. 5, p. 1–21, 2025.
CROPLIFE BRASIL. Brazilian Bioinputs: Sector Market Data [Dados de Mercado de Bioinsumos – safra 2024/2025]. São Paulo: CropLife Brasil, 2025. Avalueted on: https://croplifebrasil.org/publicacao/bioinsumos-do-brasil-dados-de-mercado-do-setor/. Acessed in:13 jun. 2025.
CRUZ, V. et al. Improvement of shelf life and sensory quality of pears using a specialized edible coating. Journal of Chemistry, p. 1–7, 2015.
EBC. Bioeconomia, agricultura regenerativa e inclusão socioprodutiva estão entre os temas de destaque da Embrapa na COP29. Agência Gov (EBC), 25 nov. 2024. Avalueted on: https://agenciagov.ebc.com.br/noticias/202411/bioeconomia-agricultura-regenerativa-e-inclusao-socioprodutiva-estao-entre-os-temas-de-destaque-da-embrapa-na-cop29. Acessed in:13 jun. 2025.
EMBRAPA. Balanço social 2009. Brasília, DF: Assessoria de Comunicação Social, 2010. Avalueted on: http://bs.sede.embrapa.br/2009/. Acessed in:13 jun. 2025.
EMBRAPA. Balanço social 2016. Brasília, DF: Assessoria de Comunicação Social, 2017. Avalueted on: http://bs.sede.embrapa.br/2016/balsoc16.html. Acessed in:13 jun. 2025.
EMBRAPA. Bioinseticidas: solução ecológica para o controle de mosquitos transmissores de doenças e pragas agrícolas. Brasília, 2005. Avalueted on: https://ainfo.cnptia.embrapa.br/digital/bitstream/CENARGEN/27329/1/fold2005-011.pdf. Acessed in:13 jun. 2025.
EMBRAPA. Documento síntese portfólio controle biológico. 2018. Avalueted on: https://sistemas.sede.embrapa.br/ideare/pages/home/principal/principalframes.jsf. Acessed in:13 jun. 2025.
FERREIRA, P. S. F.; TEBALDI, N. D. Métodos de inoculação de Xanthomonas campestris pv. passiflorae em maracujazeiro e biofertilizantes na inibição do crescimento bacteriano in vitro. Summa Phytopathologica, v. 45, p. 207–209, 2019. DOI: 10.1590/0100-5405/185793.
GOULET, F.; HUBERT, M. Making a Place for Alternative Technologies: The Case of Agricultural Bio Inputs in Argentina. Review of Policy Research, v. 37, n. 4, p. 535–555, 2020. DOI: 10.1111/ropr.12384.
GUIMARÃES, I. P. et al. Produção de mudas de três acessos de mamoeiro sob doses de bioestimulante Root. Revista de Ciências Agrárias, v. 38, n. 3, p. 414–421, 2015. DOI: 10.19084/rca.16946.
IHARA. ECO SHOT. Avalueted on: http://www.ihara.com.br/produtos/biologicos/ecoshot/177/. Acessed in:13 jun. 2025.
IÑIGUEZ MORENO, M. et al. Characterization of sodium alginate coatings with Meyerozyma caribbica and impact on quality properties of avocado fruit. Food Science and Technology, v. 152, p. 11–23, 2021.
JAFARZADEH, S. et al. Application of bionanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, v. 291, p. 10–24, 2021. DOI: 10.1016/j.cis.2021.102405.
JIN, S.; ALBERTI, F. Advances in the discovery and study of Trichoderma natural products for biological control applications. Natural Product Reports, 2025. DOI: 10.1039/D4NP00075K.
JOHNSON, R.; JOEL, J. M.; PUTHUR, J. T. Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. Journal of Plant Growth Regulation, v. 43, n. 3, p. 659–674, 2024. DOI: 10.1007/s00344-024-11281-3.
KAMAL, M. R. M. et al. Effect of coating thickness on the microstructure and mechanical properties of AL SI (LM6) alloy lost wax casting. Journal of Mechanical Engineering, v. 3, n. 1, p. 97–106, 2017.
KAWALEKAR, J. S. Role of Biofertilizers and Biopesticides for Sustainable Agriculture. Journal of Bio Innovation, v. 2, p. 73–78, 2013.
KULKARNI, M. G. et al. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone like activity in Spinacia oleracea L. Biotechnology, v. 48, p. 83–89, 2019. DOI: 10.1016/j.nbt.2018.08.004.
LIMA, A. S. et al. Organic Fertilization and Hydric Reposition in the Initial Production of Passiflora edullis f. flavicarca Deg. Journal of Experimental Agriculture International, v. 30, n. 3, p. 1–14, 2019. DOI: 10.9734/JEAI/2019/46338.
LIMA, M. P. L. et al. Bioatividade de formulações de NIM (Azadirachta indica A. Juss, 1797) e de Bacillus thuringiensis subsp. aizawai em lagartas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ciência e Agrotecnologia, v. 34, n. 6, p. 1381–1389, 2010.
LIU, Y. et al. Multifaceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: Review and perspectives. Agronomy, v. 14, n. 6, p. 1141, 2024. DOI: 10.3390/agronomy14061141.
MATTEN, S. R. et al. Biological pesticides and the US environmental protection agency. In: Advanced engineered pesticides. CRC Press, 2024. p. 321–335.
MAZARO, S. M. et al. Produção e qualidade de morangueiro sob diferentes concentrações de calda bordalesa, sulfocálcica e biofertilizante supermagro. Semina: Ciências Agrárias, v. 34, n. 6, p. 3285–3294, 2013. DOI: 10.5433/1679-0359.2013v34n6p3285.
MINISTÉRIO DA AGRICULTURA E PECUÁRIA. Gestão Estratégica do Programa Nacional de Bioinsumos. Brasília, 27 maio 2020; atualizado em 31 jan. 2024. Avalueted on: https://www.gov.br/agricultura/pt-br/assuntos/inovacao/bioinsumos/o-programa/gestao-estrategica-do-programa-nacional. Acessed in:13 jun. 2025.
MOHD ZAINUDIN, N. A. I. et al. Utilisation of plant based product in post harvest disease management of fruits. In: Advances in Tropical Crop Protection. Cham: Springer Nature, 2024. p. 121–155.
MONTEIRO, L. B.; SOUZA, A. Controle de tortricídeos em macieira com duas formulações de Bacillus thuringiensis var. kustaki em Fraiburgo, SC. Revista Brasileira de Fruticultura, v. 32, n. 2, p. 423–428, 2010. DOI: 10.1590/S0100-29452010000200017.
MORADI, S. et al. Toward a new generation of fertilizers with the approach of controlled-release fertilizers: a review. Journal of Coatings Technology and Research, v. 21, n. 1, p. 31–54, 2024. DOI: 10.1007/s11998-023-00843-x.
MORANDI FILHO, W. J. et al. Efeito de Bacillus thuringiensis e inseticidas químicos no controle de Argyrotaenia sphaleropa (Meyrick, 1909) (Lepidoptera: Tortricidae) em videira. Arquivos do Instituto Biológico, v. 74, n. 2, p. 129–134, 2007. DOI: 10.1590/1808-1657v74p1292007.
MOREIRA, F. J. C. et al. Controle de Cosmopolites sordidus (Coleoptera: Curculionidae) com os fungos entomopatogênicos Beauveria bassiana e Metarhizium anisopliae em banana. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 12, n. 3, p. 366–373, 2017. DOI: 10.18378/rvads.v12i3.4932.
NASCIMENTO, T. A. et al. Bacillus thuringiensis strains to control Noctuidae pests. Journal of Applied Entomology, v. 148, n. 4, p. 371–381, 2024.
OLIVEIRA, F. I. F. et al. Crescimento e produção do maracujazeiro amarelo fertirrigado com esterco bovino líquido fermentado. Revista Agropecuária Técnica, v. 38, n. 4, p. 191–199, 2017. DOI: 10.25066/agrotec.v38i4.34621.
POLICARPO, M. A.; SAMBUICHI, R. H. R. O Programa Nacional de Bioinsumos no âmbito da Política Nacional de Agroecologia e Produção Orgânica: origem, contribuições e potencialidades. Rio de Janeiro: Ipea, 2023. 70 p.
RAGASRUTHI, M. et al. Bacillus thuringiensis (Bt) based biopesticide: Navigating success, challenges, and future horizons in sustainable pest control. Science of The Total Environment, p. 176594, 2024. DOI: 10.1016/j.scitotenv.2024.176594.
RAYMOND, B. et al. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Journal of Invertebrate Pathology, v. 98, n. 1, p. 307–313, 2008. DOI: 10.1016/j.jip.2008.01.006.
RIBEIRO, R. F. et al. Biostimulant on seedling production of grape cv. Crimson Seedless. Scientia Agraria, v. 18, n. 4, p. 36–42, 2017. DOI: 10.5380/rsa.v18i4.52291.
ROUPHAEL, Y. et al. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Scientia Horticulturae, v. 226, p. 353–360, 2017. DOI: 10.1016/j.scienta.2017.09.007.
RUZZI, M.; COLLA, G.; ROUPHAEL, Y. Biostimulants in agriculture II: towards a sustainable future. Frontiers in Plant Science, v. 15, p. 1427283, 2024. DOI: 10.3389/fpls.2024.1427283.
SERRANO, L. et al. The use of Bacillus subtilis QST 713 and Bacillus pumilus QST 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Horticulturae, v. 986, p. 149–156, 2013. DOI: 10.17660/ActaHortic.2013.986.15.
SHAH, S. et al. Prestorage chitosan thyme oil coating anthracnose in mango fruit. Scientia Horticulturae, v. 284, p. 11–39, 2021. DOI: 10.1016/j.scienta.2021.110139.
SHARMA, C. et al. Potential of emerging "all natural" edible coatings to prevent post harvest losses of vegetables and fruits for sustainable agriculture. Progress in Organic Coatings, v. 193, p. 108537, 2024.
SHINGA, M. H. et al. Recent Advancements and Trends in Postharvest Application of Edible Coatings on Bananas: A Comprehensive Review. Plants, v. 14, n. 4, p. 581, 2025. DOI: 10.3390/plants14040581.
SOARES, C. O. O próximo salto da agricultura. Agroanalysis, v. 42, n. 4, p. 21–22, 2022.
TARIBUKA, J. et al. Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana. Journal of Degraded and Mining Lands Management, v. 4, n. 2, p. 723–731, 2017. DOI: 10.15243/jdmlm.2017.042.723.
THAMBUGALA, K. M. et al. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology, v. 10, p. 1–19, 2020. DOI: 10.3389/fcimb.2020.604923.
THOMIDIS, T.; PANTAZIS, S.; KONSTANTINOU DIS, K. Evaluation of Serenade Max to Control Fruit Rot of Grapes. Journal Of Agricultural Science, v. 8, n. 11, p. 212–214, 2016. DOI: 10.5539/jas.v8n11p212.
VALENZUELA RUIZ, V. et al. Regulation, biosynthesis, and extraction of Bacillus derived lipopeptides and its implications in biological control of phytopathogens. Stresses, v. 4, n. 1, p. 107–132, 2024. DOI: 10.3390/stresses4010007.
VIDAL, M. C. et al. Bioinsumos: a construção de um Programa Nacional pela Sustentabilidade do Agro Brasileiro. Economic Analysis of Law Review, v. 12, n. 3, p. 557–574, 2021.
WANTAT, A.; ROJSITTHISAK, P.; SERAYPHEAP, K. Inhibitory effects of high molecular weight chitosan coating on 'Hom Thong' banana fruit softening. Food Packaging and Shelf Life, v. 29, p. 10–31, 2021. DOI: 10.1016/j.fpsl.2021.100731.
ZIN, N. A.; BADALUDDIN, N. A. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, v. 65, n. 2, p. 168–178, 2020. DOI: 10.1016/j.aoas.2020.09.001.
ZULFIQAR, F. et al. Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change? Plant Physiology and Biochemistry, p. 108699, 2024.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Anais da Academia Pernambucana de Ciência Agronômica

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


