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ABSTRACT 
Water quality is essential for the maintenance of all forms of life on the planet since the consumption 

of contaminated water can pose health risks. In this study, green coconut-activated charcoal was 
used in the treatment of contaminated water at concentrations of 2, 5, 10, and 20 mg/L of the 

herbicide dichloro phenoxy acetic acid (2,4-D). Toverify the efficiency of the adsorption process, 

germination bioassays, and cytogenetic analyses were performed with seeds of Lactuca sativa L. as 

bioindicator. The germination bioassays were carried out with a germination paper roll in triplicate, 
with 300 seeds per treatment. As for the cytogenetic analysis, 3000 cells were analyzed per 

treatment. The results showed that the green coconut activated charcoal has adsorptive potential to 

remove 2,4-D from water, with germination results of 89.6% for treated water, 92% for pure water, 

and 0% for contaminated water. In the cytogenetic analysis, the Mitotic Index (MI) values were high 
and did not differ statistically for the pure and treated water sample, since the average between the 

four concentrations was 11.41 for the pure water sample, 10.64 for the treated and 7.15 for the 

contaminated water samples. As for chromosomal abnormalities (CA), there was a gradual increase 

from 0.47 to 1.10 according to exposure to 2,4-D concentrations. We thus conclude that 2,4-D has a 
toxic action for the development of lettuce seeds, and activated carbon from green coconut was 

efficient in adsorption. 
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RESUMO  
A qualidade da água é indispensável para a manutenção de todas as formas de vida do planeta, 

umavez que oconsumo de água contaminada pode oferecer riscos à saúde. Neste trabalho foi 
utilizado o carvão ativado de coco verde no tratamento da água contaminada nas concentrações 

de 2, 5, 10 e 20 mg/L do herbicida ácidodiclorofenoxiacético (2,4-D). Para verificar a eficiência 

do processo de adsorção foram realizados bioensaios de germinação e análise citogenética com 
sementes de Lactuca sativa  L. como bioindicador. Os bioensaios de germinaçãoforam feitos 

em rolo de papel de germinação em triplicata, totalizando 300 sementes por tratamento, e para 
a análise citogenética foram analisadas 3.000 células por  tratamento. Os resultados obtidos 

mostraram que ocarvão ativado de coco verde possui potencial adsortivo para remover o 2,4-D 

da água, com  resultados de germinação de 89,6%  para água tratada, 92% para água pura e 0% 
para águacontaminada.  Na análise citogenética os valores de Índice Mitótico (IM) foram altos 

e nãodiferiram estatisticamente para as amostras de água pura e tratada, uma vez que a média 
entre as quatro concentrações foi 11,41 para amostras de água pura, 10,64 para amostras 

tratadas e de 7,15 para as amostras de água contaminada. Quanto as anormalidades 

cromossômicas (AC) houve um aumento gradual de 0,47 para 1,10 conforme exposição às 
concentrações de 2,4-D. Concluímos assim que o 2,4-D possui ação tóxica para o 

desenvolvimento das sementes de alface, e o carvãoativado de coco verde se mostrou eficiente 

na adsorção. 
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Introduction 

 
Water is essential when it comes to the 

maintenance of all forms of life on Earth.Its use must be 

sustainable and rational because it is a resource of great 

social and economic value.When poorly managed, the 

characteristics of water can be compromised (WHO; 

DODDS, PERKIN, GERKEN, 2013; BEHMEL et  al., 

2016). 

One of the major causes of water contaminationis 

the presence of herbicides, including 2,4-D (dichloro 

phenoxyaceticacid), which is an organic, systemic 

selective herbicide for the control of weeds, including 

broadleaf ones  (AQUINO et al., 2007), and has been 

widely used since the 1940s  (ISLAM et al., 2018). Since 

2,4-D is anelective herbicide, it only affects dicots, not 

monocots (GROSSMANN, 2003). Therefore, it is used to 

combat weeds in soybean, corn, wheat, rice, and sugarcane 

crops, as well as pastures (ZAFRA-LEMOS et  al., 2021). 

There are about 1,500 herbicides/pesticides that contain 

2,4-D as their main ingredient (AYLWARD; HAYS, 

2008), and which are widely used all around the world 

(CHEN et al., 2018). When applied to target plants, it acts 

as an auxin signaling agent, which leads to uncontrolled 

plant growth, epinasty, and death (GOGGIN; 

CAWTHRAY; POWLES, 2016; GROSSMANN, 2010). 

The effect of 2,4-D on non-target organisms is 

alarming. In animals, studies report interference of 2,4-D 

with the metabolism of fish, amphibians, insects, rodents, 

and small ruminants (STEBBINS-BOAZ et al., 2004; 

LACHAPELLE et al., 2007; CATTANEO et al., 2008; 

FONSECA et al., 2008; MICHAUD; PARK; KWAK, 

2010; VARGAS, 2010; IKECHUKWU et al., 2012; 

MENEZES et al., 2015; LAJMANOVICH et al., 2015; 

FREYDIER; LUNDGREN, 2016; DAKHAKHNI; 

RAOUF, QUSTI, 2016; AMEL et al., 2016; ZAFRA-

LEMOS et al., 2021). When it comes to humans, some 

studies relate infertility in men to exposure to 2,4-D in 

cases in which spermatozoids, when exposed to this 

contaminant, had their total/progressive mobility anda 

bility to penetrate a viscous medium compromised. This 

indicates that exposure to 2,4-D and its accumulation in 

seminal plasma may increase infertility risks, as stated by 

TAN et al., 2016). 

Therefore, itis necessary to remove 2,4-D and other 

contaminants from water to ensure quality standards.There 

are several methodologies used topur if water 

contaminated with emerging contaminants, such as 

photocatalytic oxidation  (GIRI et al., 2010; LEE et al., 

2015;), electrocoagulation (KAMARAJ et al. ,2014; 

KAMARAJ et al., 2015)  Fenton degradation (CHEN et 

al., 2015), biodegradation (FERREIRA-GUEDES; 

MENDES; LEITÃO, 2012) and the adsorption process in 

which activated charcoal can be used (COELHO et al, 

2019;WANG et al., 2020). 

The use of activated charcoal in the water 

purification process is widespread worldwide due to its 

surface area and porous structure, functional groups, 

chemical properties, surface texture, and other 

characteristics importantfor processes such as adsorption.  

 

 

 

 

 

In addition, it is important to emphasize that the 

activated charcoal production process can improve these 

characteristics even more (ALVES et al., 2019). 

For the production of activated charcoal, the 

rawmaterial must be rich in carbonaceouscontent, such as 

wood and agro-industrial waste (CHOI et al., 2009).  

Activated charcoal lproduced from biological raw material 

is called a biosorbent (CUSÍOLI et al., 2019) which can be 

a good alternative due to its low costs of application. 

Besides, rice husk and cereal residues can be used for that 

purpose, since they turn into activated charcoal after 

processing (BOONAMNUAYVIRAYA et al., 2004; 

SATARI; KARIMI, 2018). 

The number of toxic residues of agricultural, 

industrial, or domestic origin used in the environment with 

out proper treatment has been increasing exponentially. As 

a response, the use of bioassays to monitor toxicological 

effects on living organisms has been explored 

(BADERNA et al., 2011). To carry out bioassays, 

organisms that are bioindicators of environmental 

pollution are used.They can be species or communities, 

such as animals, plants, and microorganisms, which can 

detect the presence of toxic substances in the environment 

(HOLT; MILLER, 2011). 

Plants are excellent indicators of genetic damage 

when exposed to chemical products, and tests that make 

use of them are simple and inexpensive (GRANT, 1999; 

MONTEIRO et al., 2007). For instance, Lactuca sativa L., 

popularly known as lettuce, has several advantages. It is 

used instudies for toxicity analysis, due to rapid 

germination, uniformity, and sensitivity (TIGRE et al., 

2012), in addition to stable andwell-defined cytogenetic 

characteristics, such as large chromosomes in reduced 

number with karyotypic characteristics that facilitate a 

microscopic view of the chromosomes allowing a clear 

assessment of their alterations (SOUZA et al., 2009, HOU 

et al., 2014; PALMIERI et al., 2014; ARAGÃO et al., 

2015; WANG et al., 2016; CARVALHO et al., 2019; 

VIEIRA et al., 2022).  

There are studies on the removal of 2,4D, but none 

of them verified the toxicity oftreated water. This work, in 

turn, aimed to study the use of green coconut activated 

charcoal as an adsorbent for removing 2,4-D from water; 

verify the efficiency of Lactuca sativa L. as a bioindicator; 

and performcy to genetic analysis of the a forementioned 

contaminant. 

 

Materials and methods 

 
Preparation of solutions for the germination test 

 First, 2,4-D herbicide solutions (Sigma –Aldrich 

PA > 98%) were prepared at 2, 5, 10, and 20 mg/L 

concentrations. The solutions used for the germination test 

were: a) pure water (PW), b) water contaminated with 2,4-

D (CW) and c) treated water (TW). To obtain the treated 

water sample, water was experimentally contaminated 

with different concentrations. Then, it was passed through 

a gravitational filter with green coconut-activatedcharcoal. 
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The solutions were analyzed with aspectro photometer 

(HACHDR5000) at a wavelength of 230 nm, before and 

after filtration. 

 

Preparation of the gravitational filter 

  
 The gravitational filter was prepared with the aid 

of hermetic support as a container, provided by 

Carbontec®, a company based in Maringá, state of Paraná, 

Brazil (Purific - Brazil). Approximately 140 g of activated 

charcoal purchased from the company Bahia Carbon was 

added to the hermetic support, according to the size and 

maximum capacity.At first, about 20 L of deionized water 

was passed through the filter, so that the color would not 

interferewith the germination analysis. Rightafter that, the 

contaminated water (CW) was passed through the filter in 

continuous flow, and, after filtration, treated water (TW) 

was obtained. These steps were performed separately for 

all concentrations of the contaminant (SHIMABUKU et 

al., 2016). 

 

Preparation of the germination test 

 

The germination test was performed to verify the 

effect of solutions (a), (b), and (c) as described in item 2.1. 

Seeds of Lactuca sativa L. (TopSeed®) were used as 

bioindicators. For each solution, 100 seeds were used. All 

tests were performed in triplicate.We used germination 

paper (J. Prolab®), which was submerged in solutions (a, 

b, and c) for 24 hours. The seeds were sown on moistened 

paper and kept in an oven for 7 days at a temperature of 

20ºC ± 1ºC. After this period, normal, abnormal, and dead 

seedlings were counted, and the proportions of normal 

seedlings per treatment were calculated. Regarding the 

classification of the seedlings, normal ones are understood 

as those that present all their essential structures, whereas 

the abnormal ones have defects in some parts and have no 

potential to develop (BRASIL, 2009). 

 

Cytogenetic analysis 

 
Seeds of Lactuca sativa L. were sown on Petri 

dishes and germination paper moistened with 5 mL of the 

respective solutions and remained in an oven for 48 

hoursat 20ºC ± 1ºC. The methodology used for preparing 

the slides was that by Freitas et al. (2016) with 

modifications. The roots used for the cytogenetic analysis 

were collected and fixed into a solution of ethanol and 

acetic acid (3:1) for 24 hours. To prepare the slide, the 

meristematic region was cut and boiled in a 2% acetic or 

ceinsolution (Dinâmica®) transferred to the slide, covered 

with a cover slip, and care fully crushed over a drop of 2% 

acetic orcein solution. The slides were analyzed under an 

optical light microscope. There were 1,000 cells per slide 

and 3 slides per sample, witha total of 3,000 cells per 

sample. 

The analyzed parameters were calculated by 

Çildirand Liman (2020). The Mitotic Index (MI) was 

calculated as the number of dividing cells divided by the 

total number of observed cells x 100. Chromosomal 

aberrations (CA) were replaced as the total number of cells 

with AC divided by the total number of observed cells x 

100. After viewing under an optical microscope, the slides 

were viewed under a photographic microscope to capture 

images of the cell cycle and the chromosomal aberrations 

found. 

 

Statistical analysis 

 
The normality and homogeneity of variances were 

verified by using Shapiro-Wilk and Bartletttests 

respectively. As the germination data did not show any of 

these characteristics, they were transformed using the 

natural log of the proportion of normal seedlings, divided 

by the subtraction of the proportion of normal seedlings 

from one unit (logito) (Eq.1). 

 

                                            (Eq.1) 

 
Where p is the proportion of normal seedlings. 

Initially, normality and homogeneity of variances were 

verified by using Shapiro-Wilk and Bartlett tests 

respectively. As the germination data did not show any of 

these characteristics, they were transformed using the 

natural log of the proportion of normal seedlings, divided 

by the subtraction of the proportion of normal seedlings 

from one unit 

For the genetic data, normality and homogeneity of 

variances were verified using Shapiro-Wilk and 

Bartletttests, respectively. As the MI and CW data did not 

show normality or homogeneity of variances, generalized 

linear models with gamma distributionand logarithmic link 

function were fitted for each variable, considering water 

and herbicide as factors. Fit quality was initially addressed 

by analyzing the deviations by degrees of free demand, 

later, by the standardized Pearson residuals graphs 

(NELDER; WEDDERBURN, 1972). 

 

Results and discussion 
 
Table 1 shows the results of the germination test for 

samples of pure, contaminated, and treated water. 

 
Table 1. Mean and standard deviation of the proportions of germinated 

seeds according tothewater directors 

 
 

 

 

Means followed by the same letter do not differ from Tukey's test 

(p<0.05).                                                   Source: Own authorship (2023) 

According to Table 1, regarding the germination 

test, there was no interaction between the two factors, 

namely water treatment and herbicide concentration 

(p=0.1333). There was a main effect to f water (p=0.0443), 

and no main effect oft heherbicide (p=0.8544). All water 

samples differed from each other according to Tukey’s test 

Water sample Mean  and standard 

deviation 

Pure 0.9216 ± 0.027A 

Treated 0.8966 ± 0.031B 

Contaminated 0 ±  0C 
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(p<0.05). Pure water had the highest average proportion of 

seedlings with hall the irnormal structures, where as 

contaminated water did not show any normal seedlings, as 

root growth was inhibited at all concentrations, making 

them normal. The percentage of germination of the sample 

with treated water (89.6%) using green coconut activated 

charcoal differed statistically from the percentage of 

germination of the sample with pure water (92%). 

This suggests that there may have been a fact or 

that influenced the process of water treatment, causing 

some residual contaminants to remaineven after the 

adsorption process. Dabrowski et al. (2005) listed some 

factors that can influence the process of water treatment by 

activated charcoal, such as the type of activated charcoal 

precursor (wood, petroleum residues, bituminous coal, 

lignite, between others), aqueous solubility of the 

compound and availability of oxygen in thes olution. 

Akzo and Kabasakal (2004) analyzed the influence 

of temperature on adsorption, and the results showed that 

higher adsorption of 2,4-D occurs thigher temperatures. 

Thus, the water treatment process can be affected, and its 

results can be altered due to these parameters. This 

possibly explains the statistical differencein germination 

percentage between treated water and pure water samples. 

Table 2. Mean and standard deviation of the mitotic index (MI) for all 

samples of Lactuca sativa L. 

Samples  Herbicide Solution  

 
2mg.L-1 5mg.L-1 10mg.L-1 20mg.L-1 

P 
11.20±0.36Aa 11.47±0.42Aa 11.47±0.40Aa 11.50±0.20Aa 

T 10.9±0.09Aa 10.83±0.06Aa 10.87±0.12Aa 9.98±1.01Aa 

C 7.79±0.38Ab 7.06±0.02Bb 6.96±0.07Bb 6.81±0.04Bb 

The uppercase letters in the rows and lowerca seletters in the columnsdo 

not differ statistically by Tukey's test (p<0.05). (P = pure; T = treated; C 

= contaminated). Source: own authorship (2023). 

For the Mitotic Index (MI), which corresponds to 

the total number of dividing cells during the cell cycle 

(Figure 1), there was an interaction between the factors of 

water treatment and herbicide concentration (p=0.001). 

There was no statistical difference between the 2,4-D 

concentrations for the pure and treated water samples since 

the average betweenhese two parameters was 11.41 and 

10.64 respectively. As for contaminated water at a 

concentrationf 2 mg/L of 2,4-D, presented a statistically 

higher mean (7.79) than the other concentrations (7.06, 

6.96, and 6.81) according to Tukey's test (p<0.05) (Table 

2). For all 2,4-D concentrations tested, treated and pure 

water has statistically higher MI means (11.41 and 10.64) 

than contaminated water (7.15). 

The 2,4-D showed totoxic effect for L. sativa L. 

when in higher concentrations (10 and 20 mg L). Thus, the 

sample with water contaminated with different 

concentrations of 2,4-D showed lower MI, respectively 

7.79, 7.06, 6.96, and 6.81, about the indices in the samples 

with pure water, where the results were: 11.20, 11.47, 

11.47 and 11.50, and treated (10.90, 10.83, 10.87, 9.98). 

For samples with treated water whose average between the 

four concentrations was 10.64, the MI values did not differ 

statistically about the pure water sample (average of 

11.41), thus evidencing the efficiency in the treatment 

process, and samples with contaminated water were 

superior (mean MI of 7.15), regardless of concentration 

(Figure 1). 
 

Figure 1. Phases of Mitosis in L.  sativa L in pure water. A: Prophase. B: 

Metaphase. C: Anaphase. D: Telophase. 

 
                                                                   Source: Own authorship (2023) 

 

As discussed bove, even if contaminant residues 

remained in the water (Table 2), they were not enough to 

affect themitotic index of the seeds. Themitotic index can 

assess the cytotoxicity of several agents (FERNANDES; 

MAZZEO; MARIN-MORALES, 2007) such as 2,4-D, and 

is indicative of environmental toxicity. Compounds that 

can interfere with the metabolism of plants represent a 

dangerto human health, and when present in water, even in 

small amounts, they are mutagenic and can cause birth 

defects (PATEL et al., 2019). Many toxic compounds can 

affect DNA and cause mutations (KLAUNIG; 

KAMENDULIS; HOCEVAR, 2010). The mixture of toxic 

compounds found in industrial effluents may be related to 

carcinogenicity (OHE; WATANABE; WAKABAYASHI, 

2004; RICE et al., 2018). Table 3 shows the values 

obtained for Chromosomal Abnormalities (CA) in samples 

treated with 2,4-D. 

Table 3. Means and Standard Deviation of Chromosomal Abnormalities 

(CA). 

Samples  Herbicide Solution  

 2mg.L-1 5mg.L-1 10mg.L-1 20mg.L-1 

P 
0.10±0.10Aa 0.10±0.17Aa 0.10±>0.001Ab 0.10±0.10Ab 

T 
0.30±0.20Aa 0.23±0.15Aa 0.20±0.10Ab 0.30±0.10Ab 

C 
0.47±0.15Ca 0.60±0.10Ba 1.00±0.10Aba 1.10±0.20Aa 

The saupperca seletters in the rows and lower case letters in the columns 

do not differ statistically by Tukey's test (p<0.05). (P = pure; T = treated; 

C = contaminated).                                    Source:Oown authorship (2023) 

 For Chromosomal Aberrations (CA) there was 

interaction between water treatmentand herbicide 

concentration (p=0.0062). AC gradually increased 

according to exposure to 2,4-D concentrations in 

contaminated water, values ranged from 0.47 to 1.10 

according to the increase in herbicide concentration 

(table). The AC, as well as the IM, varied according to the 

concentrations. At higher concentrations of 2,4-D (10 and 

20 mg/L), CA rates also increased in treated (0.20 and 

0.30) and contaminated (1.00 and 1.10) water samples, 
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demonstrating a concentration-dependent positive effect, 

while at lower concentrations (2 and 5 mg/L), there was no 

signify cant difference between CA rates. 

Figures 2 and 3 list the cell cyclephases and 

chromosomal berrations found for each sample and 2,4-D 

concentrations. We can observe that the prophase 

phasesod out, being found more frequently, followed by 

metaphase, anaphase, and, finally, telophase. Regarding 

the analysis of chromosomal berrations, chromosome 

bridges in anaphase were more frequent, followed by 

chromosomes lost in metaphase and, finally, c-

metaphases. 

Chromosomal aberrations (Figure 3) correspond to 

abnormalities found during the cell cycle, such as c-

metaphases, chromosomal bridges, chromosome loss, and 

others. In this study, we detected 3 of them, namely-

metaphase and chromo some loss, which indicate 

aneugenic damage, and chromosomal bridges, due to 

clastogenic effects. The genotoxic potential of 2,4-D has 

been identified in different plant species, whose alterations 

induced by this herbicide  involve chromosomal 

fragmentation, bridges, chromosomal adhesion, lagging 

chromosomes, micronucleus, and in addition, strandbreaks 

in DNA (ENAN, 2009).  

 
Figure 2. Grouped graph of all cell cyclephases and chromosomal 

aberrations found.   
 

  
                                                    Source: Own author ship (2023) 

 

Figure 3. Chromosomal abnormalities found. A:C-metaphase, B: 

anaphase– an arrow indicatesa chromosomal bridge. Source: own author 

ship. 

 

                                                            Source: Own authorship (2023) 

The effects of 2,4-D on seeds of L. sativa L. are still 

unknown, but its seeds treated with different 

concentrations of the herbicide glyphosate demonstrated 

chromosomal anomalies such as chromosomal ossand 

stickychromo some, anaphase and telophase with bridges, 

multipolar anaphase, and C-metaphase, in addition to the 

formation of micronuclei (VIEIRA et al., 2022).  

Plants have been used as bioindicators of 

environmental pollution for a long time, as they of ferthe 

assessment of toxicity and mutagenicity present in the 

environment (SANDALIO et al., 2001). Chromosomal 

aberrations determine the genotoxicity of compounds or 

substances, where as the mitotic index is used to determine 

cytotoxicity. The mechanisms of action of the substances 

can be clastogenic when they involve breaking 

chromosomes and aneugenic when there are 

chromosomally and spindle alterations (LEME; MARIN-

MORALES, 2009, VIEIRA SILVEIRA, 2018; VIEIRA et 

al., 2022). 

Activated charcoal is widely used to remove 

pollutants not only from waste water streams but also from 

drinking water sources, such as ground water, rivers, and 

lakes (Crini et al., 2019). Brito et al. (2020) used coconut 

shell and babassu endocarp-activated bio charcoal, and 

achieved a 2,4-D removal index of 97% and 99%, 

respectively. These results are similar to that of our study, 

in which, through the use of bioassays with L. sativa L., 

the water sample treated with green coconut activated 

charco al showed results very similar to those of the pure 

water samples.  

In the same way that the 2,4-D herbicide caused 

root growth inhibition in L.sativa L. seedlings, the study 

by Brito et al., (2017) tested two bases of the glyphosate 

herbicide (Roundup® and Glyphosate AKB 480 ®) to 

evaluate the effects on lettuce seed germination. The 

authors detected are duction of the root system at all 

concentrations tested. Reduced root growth affects the 

growth of an entire seedling by restricting water and 

nutrient uptake. The phytotoxic effects of 2,4-D are 

directly related to these restrictions imposed on seedling 

growth,and lead to inhibition of enzyme activity and 

membrane instability with detrimental changes in the 

physiology of lettuce sedgings (LAMHAMDI et al., 2011). 

For contaminated water, there was no normal seedling in 

any of the repetitions, as there was no proportional grow 

thand development of the root system. 

The 2,4-D is harmful to the environment, for has 

phytotoxic, cytotoxic, and genotoxic effects on several 

plants. The results obtained in our research corroborate 

studies by Okzul et al., (2016) where Allium cepa L. bulb 

roots were exposed to different concentrations of 2,4-D at 

a higher concentration, which was 4.02 mg/L. The 

phytotoxic and cytotoxic effects of 2,4-D led to root 

growth inhibition and a decreased mitotic indexin addition 

to chromosomal aberrations which was the case in this 

study. Both are closely related since plant growth demands 

cell proliferation (HARASHIMA; SCHINITTGER, 2010).  

The results of our study are in linewith other 

published studies that addresssing these of vegetables as 

bioindicators of environmental pollution, both for 

pollutants in general and for pesticides, oils, drugs, and 

dyes. In the study by Pawlowski et al., (2013) whose dan 

essential oil from Schinus Lentisci folius March., in 
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bioassays with L. sativa L. and Allium cepa L., both 

species had a decrease in their MI by 25.14% and 19.35%, 

respectively. There was also induction of aneugenic and 

clastogenic effects in both of them. Alves et al., (2018) 

studied the effect of two phenolic compounds (Timol and 

Carvacrol) on L. sativa L. seeds, and both showed a toxic 

effect. Carvacrol showed a genotoxic effect on L. sativa 

L., with chromosomal aberrations, effects that are similar 

to those caused by 2,4-D. 

About humans, the presence of the 2,4-D poses 

heals risks. Some studies have suggested that exposure to 

2,4-D is related to the risk of developing Parkinson's 

(Tanner et al., 2009),  as well as soft sarcoma, non-

Hodgkin's, blad Behandlung cancers in farmers and 

workers exposed to 2,4-D during manufacturing and 

handling processes (GOODMAN; LOFTUS; ZIL, 2017; 

BOERS et al., 2010; KOUTROS et al., 2016; COGGON et 

al., 2015; AYLWARD, HAYS, 2015). Inlight of the 

foregoing, removing 2,4-D and other pollutants from water 

is necessary to maintain its  quality standards for human, 

animal, and vegetable consumption. 

With all this, the contribution of the study was to 

point out important results, addressing the removal of 2,4-

D from water, which is an environmental and public health 

concern and which has been of great concern worldwide. 

Contamination of water by herbicides can have adverse 

effects on human health and aquatic ecosystems. The 

adsorption process with green coconut activated carbon 

together with the test of L sativa L. seeds was effective, 

this can contribute to the improvement of water quality 

and the reduction of the negative impacts of this 

contaminant and also give a better destination to the waste 

agroindustrial. Drinking water is a fundamental human 

right, and ensuring the supply of clean and safe water is 

essential for the health and well-being of the population. 

 

Conclusion 

 
The use of green coconut activated charcoal 

proved to be efficient in the treatment of water 

contaminated with different concentrations of 2,4-D, since 

the results of the germination bioassays and 

cytogenetically were very similar. Seeds of Lactuca sativa 

L. showed to be sensitive inthe detection of  2,4-D in 

water, which makes them a good indicator for this 

compound in an aqueous medium. Herbicide 2,4-D caused 

phytotoxic damage to Lactuca sativa L. to see dings, 

inhibiting the growthand development of their root system 

at all concentrations (2, 5, 10 e 20 mg/L). Regarding the 

cytogenetic analysis, the reduction of the MI (11,41 of 

pure water, 10,65 treated water, to 7,16 of contaminated 

water) and CA  rates increased in treated (0.20 and 0.30) 

and contaminated (1.00 and 1.10) water samples indicated 

cytotoxicity and genotoxicity of 2,4-D, by the 

concentrations used, which did not occur significantly in 

treated water. Due to the toxic potential of  2,4-D, it is 

crucial to remove it from water, for it interferes with the 

metabolism of several organisms. Therefore, the use of 

green coconut-activatedcharcoal is an excellent alternative 

to address thisuse. 
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