Biofilm formation by phytopathogenic bacteria Acidovorax citrulli subsp. citrulli and Ralstonia solanacearum

Carolina Barbosa Malafaia, Muriel Primon de Barros, Alexandre José Macedo, Myrzânia de Lira Guerra, Elineide Barbosa de Souza, Maria Tereza dos Santos Correia, Márcia Vanusa da Silva


Phytopathogenic bacteria are responsible for causing several losses in agriculture economic world. Biofilm formation presents itself as an important structure related to bacterial virulence. The objective of this study was to investigate the biofilm formation by Ralstonia solanacearum and Acidovorax citrulli isolates. Quantification of biofilm formation was performed by the crystal violet method, using NYD as the standard medium for both bacteria, TZC as a specific medium for R. solanacearum and YDC for A. citrulli. The biofilm was observed in SEM and CLSM. Under the tested conditions, B5-5, CGH8, CGM10 and CGH26 R. solanacearum isolates and Aac1.43 and Aac1.73 A. citrulli isolate formed moderately or strongly biofilm on both media tested. However, the amount of biofilm produced by R. solanacearum was higher than those produced by A. citrulli. The SEM and CLSM revealed structurally distinct biofilms among isolates of R. solanacearum, which did not occur for A. citrulli isolates. We conclude that R. solanacearum is a strong biofilm producer, while A. citrulli not seem to be well suited to this condition by not adhere well to the surface. This species depicts potentials to become natural models to study plant biofilm infections due to the high number of host species.


bacterial wilt; bacterial fruit blotch; scanning electron microscopy; confocal laser scanning microscopy; bacterial biofilm

Texto completo:

PDF (English)


ABSALON, C.; VAN DELLEN, K.; WATNICK P. I. 2011. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog., v. 7, n. 8, p. e1002210

BAHAR, O.; DE LA FUENTE, L.; BURDMAN, S. 2010. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. FEMS Microbiol. Lett., v. 312, n. 1, p. 33–39.

BELLENBERG, S.; DÍAZ, M.; NOËL, N.; SAND, W.; POETSCH, A.; GUILIANI, N.; VERA, M. 2014 Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res. Microbiol., v. 165, n. 9, p. 773–781.

BOGINO, P.C.; OLIVA, M. DE LAS M.; SORROCHE, F. G.; FERNANDO, G.; GIORDANO, W. 2013. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci., v. 14, n. 8, p. 15838–15859.

BRANDA, S. S.; VIK, Å.; FRIEDMAN, L.; KOLTER R. 2005. Biofilms: The matrix revisited. Trends Microbiol., v. 13, n. 1, p. 20–26.

BURBANK, L.; MOHAMMADI, M.; ROPER, M.C. 2015. Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl. Environ. Microbiol., v. 81, n.1, p.139–148.

BURDMAN, S.; WALCOTT, R.; Acidovorax citrulli: Generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant. Pathol., v.13, n. 8, p. 805–815.

CHALUPOWICZ, L.; ZELLERMANN, E-M.; FLUEGEL, M.; DROR, O.; EICHENLAUB, R.; GARTEMANN, K-H.; SAVIDOR, A.; SESSA, G.; IRAKI, N.; BARASH, I.; MANULIS-SASSON, S. 2012. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathol., v. 102, n. 1, p. 23–31.

DENG, W-L.; LIN, Y-C.; LIN, R-H.; WEI, C-F.; HUANG, Y-C.; PENG, H-L.; HUANG, H-C. 2010. Effects of galU Mutation on Pseudomonas syringae – Plant Interactions. Am. Phytopathol. Soc., v. 23, n. 9, p. 1184–96.

DOW, J. M.; CROSSMAN, L.; FINDLAY, KIM.; HE, Y-Q.; FENG, J-X.; TANG, J-L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA, v. 100, n. 19, p. 10995–11000.

DUNNE, W.M.; DUNNE, W.M. 2002 Bacterial Adhesion: Seen Any Good Biofilms Lately? Clin Microbiol Rev., v. 15, n. 2, p. 155–166.

FLEMMING, H.; WINGENDER, J. 2010. The biofilm matrix. Nat. Rev. Microbiol., v. 8, n. 9, p. 623–633.

GARCIA, A. L.; LIMA, W. G.; SOUZA, E. B.; MICHEREFF, S. J.; MARIANO, R. L. R. 2013. Characterization of Ralstonia solanacearum causing bacterial wilt in bell pepper in the state of Pernambuco, Brazil. J. Plant. Pathol., v. 95, n. 2, p. 237–245.

HAYWARD, A. C. 1991. Biology and Epidemiology of Bacterial Wilt Caused By Pseudomonas solanacearum. Annu. Rev. Phytopathol., v. 29, p. 65–87.

KARATAN, E.; WATNICK, P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev., v. 73, n. 2, p. 310–347.

DE LA FUENTE, L.; MONTANES, E.; MENG, Y.; LI, Y.; BURR, T. J.; HOCH, H. C.; WU, M. 2007. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol., v. 73, n. 8, p. 2690–2696.

LAUE, H.; SCHENK, A.; LI, H.; LAMBERTSEN, L.; NEU, T. R.; MOLIN, S.; ULLRICH, M. S. 2006. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology., v. 152, n. 10, p. 2909–2918.

LEBEAUX, D.; CHAUHAN, A.; RENDUELES, O.; BELOIN, C. 2013. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathog., v. 2, n. 2, p. 288–356.

LEIGH, J. A.; COPLIN, D. L. 1992. Exopolysaccharides in Plant - Bacterial Interactions. Annu. Rev. microbiol., v. 46, p. 307–346.

LI, J.; WANG, N. 2011a. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. PLoS One, v. 6, n. 7, p. e21804.

LI, J.; WANG, N. 2011b. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol., v. 12, n. 4, p. 381–396.

LIU, Y.; YANG, C. H.; LI, J. 2008. Adhesion and retention of a bacterial phytopathogen Erwinia chrysanthemi in biofilm-coated porous media. Environ. Sci. Technol., v. 42, n. 4, p. 159–165.

MANSFIELD, J.; GENIN, S.; MAGORI, S.; CITOVSKY, V.; SRIARIYANUM, M.; RONALD, P.; DOW, M.; VERDIER, V.; BEER, S. V.; MACHADO, M. A.; TOTH, I.; SALMOND, G.; FOSTER, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol., v. 13, n. 6, p. 614–629.

MARQUES, L. L. R.; CERI, H.; MANFIO, G. P.; REID, D. M.; OLSON, M. E. 2002. Characterization of Biofilm Formation by Xylella fastidiosa In Vitro. Plant. Dis., v. 86, n. 6, p. 633–638.

NASCIMENTO, A. R. P.; MARIANO, R. L. R.; SILVA, E. I. 2004. Hospedeiros alternativos de Acidovorax avenae subsp. citrulli. Hortic. Bras., v. 22, n. 3, p. 345–349.

OLIVEIRA, J. C.; SILVEIRA, E. B.; MARIANO, R. L. R.; CARDOSO, E.; VIANA, I. O. 2007. Caracterização de isolados de Acidovorax avenae subsp. citrulli. Fitopatol. Bras., v. 32, n. 6, p.480–487.

RAMEY, B. E.; KOUTSOUDIS, M.; VON BODMAN, S. B.; FUQUA, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol., v. 7, n. 6, p. 602–609.

SAFNI, I.; CLEENWERCK, I.; DE VOS, P.; FEGAN, M.; SLY, L.; KAPPLER, U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. s. Int. J. Syst. Evol. Microbiol., v. 64, n. 9, p. 3087–3103.

SILVA, K. M. M.; XAVIER, A. S.; GAMA, M. A. S.; LIMA, N. B.; LYRA, M. C. C. P.; MARIANO, R. L. R.; SOUZA, E. B. 2016. Polyphasic analysis of Acidovorax citrulli strains from northeastern Brazil. Sci Agric., v. 73, n. 3, p.252–259.

SILVA, M; S.; DE SOUZA, A. A.; TAKITA, M. A.; LABATE, C. A.; MACHADO, M. A. 2011. Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Sci., v. 9, n.1, p.58-68.

STEPANOVIĆ, S.; ĆIRKOVIĆ, I.; RANIN, L.; ŠVABIĆ-VLAHOVIĆ, M. 2004. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol., v. 38, n. 5, p. 428–432.

STEPANOVIC, S.; VUKOVIC, D.; DAKIC, I.; SAVIC, B.; SVABIC-VLAHOVIC, M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods, v. 40, n. 2, p. 175–179.

STRATHMANN. M.; WINGENDER, J.; FLEMMING H. C. 2002. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods, v. 50, n. 3, p. 237–248.

TAO, F.; SWARUP, S.; ZHANG, L. H. 2010. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environ. Microbiol., v. 12, n. 12, p. 3159–3170.

TRENTIN, D. DA S.; GIORDANI, R. B.; ZIMMER, K. R.; DA SILVA, A. G.; DA SILVA, M. V.; CORREIA, M. T. DOS S.; BAUMVOL, I. J. R.; MACEDO, A. J. 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol., v. 137, n. 1, p. 327–335.

TRENTIN D. S.; MACEDO A. J. 2013. Biofilmes bacterianos patogênicos: aspectos gerais, importância clínica e estratégias de combate. Rev. Lib., v.14, n. 22, p. 113–238.

WANG, L.; MAKINO, S.; SUBEDEE, A.; BOGDANOVE, A. J. 2007 Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl. Environ. Microbiol., v. 73, n. 24, p. 8023–8027.

WHITEHEAD, K. A.; VERRAN, J. 2015. Formation, architecture and functionality of microbial biofilms in the food industry. Curr. Opin. Food. Sci., v. 2, p. 84–91.

WHITEHEAD, N. A.; BARNARD, A. M. L.; SLATER, H.; SIMPSON, N. J. L.; SALMOND, G. P. C. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., v. 25, n. 4, p. 365–404.

WICKER, E.; GRASSART, L.; CORANSON-BEAUDU, R.; MIAN, D.; GUILBAUD, C.; FEGAN, M.; PRIOR, P. 2007. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl. Environ. Microbiol., v. 73, n. 21, p. 6790–6801.

YAO J, ALLEN C. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J. Bacteriol., v.189, n. 17, p. 6415–6424.



  • Não há apontamentos.

Direitos autorais 2018 Revista e Autor

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.