Padrões Espaço Temporais de Episódios de Secas na Microrregião de Barreiras-BA
Palavras-chave:
SPEI, variabilidade, tendênciaResumo
A seca é um fenômeno natural originado a partir da ausência de precipitação ao longo de certo período capaz de causar danos ao desenvolvimento de diferentes atividades da sociedade e denotam o tipo mais complexo e prejudicial de desastre natural e, vem afetando diversas regiões. Para analisar e monitorar esses fenômenos nas áreas mais susceptíveis e que são destaque no cenário agrícola nacional estão sendo utilizados diversos índices, dentre eles o Índice Padronizado de Precipitação e Evapotranspiração (SPEI) considerado um dos mais difundidos no mundo, que permite a avaliação das secas em diferentes escalas de tempo. Portanto, objetivou-se através deste trabalho identificar a variabilidade espaço temporal de eventos de secas ocorridas na microrregião de Barreiras por meio de técnicas de análise de serie temporais. Utilizou-se séries de dados históricos mensais de precipitação e temperatura do ar para o período de 1961 a 2018 provenientes das reanálises do CRU-TS-4.03. A caracterização da seca se deu através do Índice Padronizado de Precipitação e Evapotranspiração-SPEI em distintas escalas temporais (3, 6, 12, 24 e 48 meses). Os testes de tendência não-paramétricos de Mann-Kendall e Sen’s foram usados para verificar os padrões temporais para a região. Através da variabilidade das secas na região, foi possível observar o aumento progressivo de intensidade e frequência desse evento nas escalas temporais maiores, com destaque para os períodos mais recentes. A análises de tendências, possibilitou verificar que todas as escalas temporais analisadas apresentaram tendências decrescentes significativas, ou seja, aumento do fenômeno extremo das secas na região durante os anos avaliadosDownloads
Referências
ÁLVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. Meteorologische Zeitschrift, Brasília, v.22, n.6, p.711-728, 2013. http://doi.org/10.1127/0941-2948/2013/0507
ARMANI, G.; LIMA, N.G.B.; GARCIA, M.F.P.; CARVALHO, J.L. Regional climate projections for the State of São Paulo, Brazil, in the 2020 - 2050 period. Derbyana, v.43, n.773,2022. https://doi.org/10.14295/derb.v43.773.
AZUA, S. Analysis of Rainfall Variability and the Trends of Wet and Dry Periods in Makurdi and Environs Using Standardised Precipitation Index. In 6th International Conference and Annual General Meeting Meeting of Nigeria Association of Hydrological Sciences (NAHS) ”ABU,pp. 1-11, 2015.
BASTOS, L. A.; FERREIRA, I. M. Composições fitofisionômicas do bioma Cerrado: estudo sobre o subsistema de Vereda. Espaço em Revista, Catalão, v.12, n.1, 2010.
BLAIN, G.C.; SOBIERAJSKI, G.R.; WEIGHT, E.; MARTINS, L.L.; XAVIER, A.C.F. Improving the interpretation of standardizes precipitation index estimates to capture drought characteristics in changing climate conditions. International Journal of Climatology, v.42, n.11, p. 5586-5608,2022. https://doi. org/10.1002/joc.7550.
BRASIL. Superintendência do desenvolvimento do Nordeste (SUDENE). Delimitação do semiárido. 2018. Disponível em: http://sudene.gov.br/planejamento-regional/delimitacao-do-semiarido.
CASAGRANDE, E.; RECANATI, F.; PACO MELIÀ, P. Assessing the Influence of Vegetation on the Water Budget of Tropical Areas. - IFAC Papers On Line, v.51, p.,1-6, 2018. https://doi.org/10.1016/j.ifacol.2018.06.190.
CGEE- Centro de Gestão e Estudos Estratégicos. 2016.Secas no Brasil: política e gestão proativas – Brasília: - Centro de Gestão e Estudos Estratégicos. Brasília
CUNHA, A. P. M. A.; TOMASELLA, J.; RIBEIRO-NETO, G. G.; BROWN, M.; GARCIA, S.R., BRITO, S. B., CARVALHO, M. A. Changes in the spatial– temporal patterns of droughts in the Brazilian Northeast. Atmospheric Science Letters, v.19, n. 10, 2019. https://doi.org/10.1002/asl.855.
DASHTPAGERDI, M.M.; KOUSARI, M.R.; VAGHARFARD, H.; GHONCHEPOUR, D.; HOSSEINI, M.E.; AHANI, H. An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran. Environmental Earth Sciences, v.73, n.3, p.1231–1244, 2018. doi: 10.1007/s12665-014- 3477-1.
ERFRAIN, A.; WANG, G.; FOMENKO, L. Unprecedent drought over tropical South America in 2016: significantly underpredicted by tropical SST. Nature: Scientific Reports, v.7: n.5811,2017. https://doi.org/10.1038/s41598-017- 05373-2.
GILBERT, R. O. Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Company, 1987.
KAMRUZZAMAN, M.; HWANG, S.; CHO, J.; MIN-WON JANG, M.; JEONG, H. Evaluating the Spatiotemporal Characteristics of Agricultural Drought in Bangladesh Using Effective Drought Index. Water, v. 11, 2019. https://doi.org/10.3390/w11122437.
KAZEMZADEH, M.; MALEKIAN, A. Changeability evaluation of hydro-climate variables in Western Caspian Sea region, Iran. Environmental Earth Sciences, v.77, 2018. https://doi.org/10.1007/s12665-018-7305-x.
KENDALL, M. G. Rank correlation measures. London: Charles Griffin, 1945.
KENDALL, M.G. Rank Correlation Methods. United States of America: Charles Griffin, 1948.
KHAN, M. I.; LIU, D.; FU, Q.; FAI, M.A. Detecting the persistence of drying trends under changing climate conditions using four meteorological drought indices. Meteorological Applications, v.25, p.184–194, 2018. Doi:10.1002/met.1680.
KOUDAHE, K., KAYODE, A. J.; SAMSON, A. O.; ADEBOLA, A. A.; DJAVAN, K. Trend analysis in standardized precipitation index and standardized anomaly index in the context of climate change in Southern Togo. Atmospheric and Climate Sciences, v.7, 2017. https://doi.org/10.33448/rsd-v10i8.17458
LEE, C.W.; YU-HENG, T.; CHUNG-HSIUNG, S.; ZHENG, F.; ERH-TUNG, W. Characteristics of the prolonged El Niño events during 1960–2020.Geophysical Research Letters, v. 47, n. 12, 2020. https://doi.org/10.1029/2020GL088345
LIU, W.; WANG, L.; ZHOU, Y.; WANG, S.; ZHU, J.; WANG, F. A comparison of forest fire burned area indices based on H.J satellite data. Nat. Hazards, v.81, p.971-980, 2016. DOI: http://doi.org/10.1007/s11069-015-2115-x
MA, N.; SZILAGYI, J.; ZHANG, Y.Q. Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resources Research,v. 57, 2021. https://doi.org/10.1029/2021WR029691.
MALHEIROS, R. A influência da sazonalidade na dinâmica da vida no Bioma Cerrado. Revista Brasileira de Climatologia, v.19, p.113-128, 2016. http://dx.doi.org/10.5380/abclima.v19i0.48876
MANN, H. B. Econometrica. The econometric society, v.13, p.245-259, 1945.http://dx.doi.org/10.2307/1907187.
MARENGO, J. A.; ALVES, L.M.; ALVALA, R.; CUNHA, A.P.; BRITO, S.; MORAES, O.L. Características climáticas da seca de 2010-2016 na região semiárida do Nordeste do Brasil. Anais da Academia Brasileira de Ciências, v.90, p.1973-1985, 2017.
MARENGO, J.; CUNHA, A. P.; ALVES, L. A seca de 2012-15 no semiárido do Nordeste do Brasil no contexto histórico. Climanalise, v. 04, 2016.
MARENGO, J.A.; BERNASCONI, M. Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, v. 129, p. 103-115, 2015. https://doi.org/10.1007/s10584-014-1310-1.
MARENGO, J.A.; TORRES, R.R.; ALVES, L.M. 2017. Drought in Northeast Brazil—past, present, and future. Theoretical and Applied Climatology, v.129, p.1189-1200,2017. https://doi. org/10.1007/s00704-016-1840-8.
MCGREE, S.; SCHREIDER, S.; KULESHOV, Y. Trends and Variability in Droughts in the Pacific Islands and Northeast Australia. Journal of Climate, v.23, 2016.
MEZA, I.; SIEBERT, S., DÖLL, P.; KUSCHE, J;, HERBERT, C.; EYSHI REZAEI, E.; NOURI, H.; GERDENER, H.; POPAT, E.; FRISCHEN, J.; NAUMANN, G.; VOGT, J.V.; WALZ, Y.; SEBESVARI, Z.; E HAGENLOCHER, M. Global drought risk assessment for agricultural agricultural systems. Nat.Hazards Earth Syst. Sci., v.20, p.695–712,2020. https://doi.org/10.5194/nhess-20-695.
MOSTAFAZADEH, R.; ZABIHI, M. Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics, v.3, 2016
NOBRE, C.A.; MARENGO, J.A.; SELUCHI, M.E.; CUARTAS, L.A.; ALVES, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015.Journal of Water Resource and Protection, v.8, 2016. http://dx.doi.org/10.4236/jwarp.2016.82022.
NOBRE, C.A.; MARENGO, J.A.; SELUCHI, M.E.; CUARTAS, L.A.; ALVES, L.M. Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection,v.8,n.2,p.252-262,2016. https://doi. org/10.4236/jwarp.2016.82022.
PEREIRA, V.R.; BLAIN, G.C.; AVILA, A.M.H.; PIRES, R.C.; PINTO, H.S. Impacts of climate change on drought: changes to drier conditions at the beginning of the crop growing season in southern Brazil. Bragantia, v.77, p. 201-211, 2018. https://doi. org/10.1590/1678-4499.2017007.
PERUGINI, L.; CAPORASO, L.; MARCONI, S.; CESCATTI, A.; QUESADA, B.; DE NOBLET-DUCOUDRÉ, N.; HOUSE, J. I.; ARNETH, A. Biophysical effects on temperature and precipitation due to land cover change. Environmental Research Letters,v. 12, 2017.https://doi.org/10.1088/1748-9326/aa6b3f.
PIYOOSH, A. K.; GHOSH, S. K. Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stochastic Environmental Research and Risk Assessment, v.31, p.2075–2096, 2017. https://doi.org/10.1007/s00477-016-1347-y.
RUBENS JÚNIOR, F.; BARBOSA, S. R.; CEDRO, T.; VALÉRIO, R.; DIAS, E.; SANTOS, J. Y. Queimadas em áreas do Cerrado brasileiro. Revista Ibero-Americana de Ciências Ambientais, v.11, p. 587-601, 2020.Doi: 10.6008/CBPC2179-6858.2020.007.0046.
SANTOS, C. D.; CHAVES, M. L. J. Difusão do agronegócio e urbanização no Nordeste: as regiões produtivas do agronegócio da soja no oeste da Bahia e da fruticultura no baixo curso do rio Açu/Jaguaribe (CE/RN). Geografia Ensino & Pesquisa, v.18,2014. https://doi.org/10.5902/2236499413277
SANTOS, C.A.G.; BRASIL NETO R.M.; PASSOS J.S.A.; SILVA R.M. Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil. Environmental Monitoring and Assessment, v.189, p. 250–270, 2017. doi: 10.1007/s10661- 017-5948-9.
SÃO JOSÉ, R. V. COLTRI, P. P.; GRECO, R.; SOUZA, I. S.Seca no Semiárido Baiano e o Hidrometeoro (Chuva) no Contexto da Mídia Impressa do Estado da Bahia. Revista Brasileira de Geografia Física,v.13, p.249-255, 2020b. https://doi.org/10.26848/rbgf.v13.1.p249-255.
SÃO JOSÉ, R. V. COLTRI, P. P.; GRECO, R.; SOUZA, I.; Souza, A. P. S. Hazard (seca) no semiárido da Bahia: Vulnerabilidades e Riscos climáticos. Revista Brasileira de Geografia Física, v.15 n. 04, p.1978-1993,2022. Doi: 10.26848/rbgf.v15.4.p1978-1993.
SÃO JOSÉ, R. V.; COLTRI, P. P.; GRECO, R.; MELO, H. L. S.; SANTOS, K. A.; SOUZA, I. S. Seca extrema de 2012 no semiárido baiano e seus impactos: informações climáticas difundidas pela mídia. Revista Brasileira de Climatologia. 29, 2021b.
SÃO JOSÉ, R. V.; COLTRI, P. P.; GRECO, R.; SANTOS, K. A.; SOUZA, I. S.; TORRES, G. A. L.; CHARLES, R. Cobertura jornalística do perigo climático (seca) 2012-2015 na Bahia: entre o combate e a convivência com a seca. Caminhos De Geografia, v.22, n.84, p.136–153, 2021a. https://doi.org/10.14393/RCG228456771.
SÃO JOSÉ, R. V.; COLTRI, P. P.; GRECO, R.; SOUZA, I. S.; TORRES, G. A. L.; CHARLES, R.; SANTOS, K. A. Avaliação de vulnerabilidade agrícola à seca: um estudo de caso no semiárido do estado da Bahia. Caminhos de Geografia, v.21, p.96-110, 2020a. https://doi.org/10.14393/RCG217752133.
SCHUMACHER, D.L.; KEUNE, J.; DIRMEYER, P.; MIRALLES, D.G. Drought self-propagation in drylands due to land-atmosphere feedbacks. Nature Geoscience, v.15, 2022. Doi:10.1038/s41561-022-00912-7.
SEN, P.K. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, v.63, p.1379-1389, 1968.https://www.jstor.org/stable/2285891.
SILVA, W. L.; DERECZYNSKI, C.; CHANG, M.; FREITAS, M.; MACHADO, B. J.; TRISTÃO, L.; RUGGERI, J. Tendências observadas em indicadores de extremos climáticos de temperatura e precipitação no estado do Paraná. Revista Brasileira de Meteorologia, v.30, 2015.https://doi.org/10.1590/0102-778620130622.
SOBHANI, B.; ZENGIR, V.S. Modeling, monitoring and forecasting of drought in south and southwestern Iran. Model. Earth Syst. Environ., v.6, n.1, p. 63-71, 2020. Doi:10.1007/s40808-019-00655-2.
TEIXEIRA, R. L. P..; PESSOA, Z. S..; DIAS, E. M. S..; ALVES, E. P. Q. Mudanças climáticas, capacidade adaptativa e sustentabilidade: reflexões a partir das cidades da região semiárida brasileira. Revista Geotemas, Pau dos Ferros, v. 11, 2021.
VIEIRA, J.P.G.; SOUZA, M.J.H.; TEIXEIRA, J.M.; CARVALHO, F.P. Estudo da precipitação mensal durante a estação chuvosa em Diamantina, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 7, p. 762-767, 2010. https://doi.org/10.1590/S1415-43662010000700012.
YANG, H.; WANG, H.; FU, G.; YAN, H.; ZHAO, P.; MA., M. A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain China. Agr. Water Manage, v.194, p. 125-138,2017. Doi: 10.1016/j.agwat.2017.07.022.
YAO, J.; ZHAO, Y.; YU, X. Spatial-temporal variation and impacts of drought in Xinjiang 159 (Northwest China) during 1961-2015. Peer J, v. 6, n.4926, 2018.
ZHANG, B.; FATIMA K.; SALEM, A.; HAYES, M. J.; SMITH, K. H.; TADESSE, T.; WARDLOW, B.D. Explainable machine learning for the prediction and assessment of complex drought impacts. Science of The Total Environment, v.898,2023. https://doi.org/10.1016/j.scitotenv.2023.165509.
ZHANG, X.; YU, J.; LI, L.Z.X.; LI, W. Role of anthropogenic climate change in autumn drought trend over China from 1961 to 2014. J. Meteorological Res. v.36, p.251–260, 2022. Doi:10.1007/s13351-022-1178-3.
ZHAO, M.; GERUO, A.; LIU, Y.L.; KONINGS, A.G. Evapotranspiration frequently increases during droughts. Nature Climate Change, v.12, p.1024–1030, 2022. Doi:10.1038/s41558-022-01505-3.
ZYLSTRA, P.; BRADSTOCK, R. A.; BEDWARD, M.; PENMAN, T. D.; DOHERTY, M. D.; WEBER, R. O.; GILL, A. M.; CARY, G. J. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: species, not surface fuel loads, determine flame dimensions in Eucalypt forests. Plos One, v.11, n.8, 2016.http://doi.org/10.1371/journal.pone.0160715.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Brazilian Journal of Agroecology and Sustainability
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.