Impact of cooking on the bioactive compounds and antioxidant activity of gherkin (Cucumis anguria L.)

Autores

DOI:

https://doi.org/10.24221/jeap.7.01.2022.3889.033-040

Resumo

Despite the high consumption of Japanese gherkin in the Northeast of Brazil, very few studies with this vegetable are found in the literature. As it is consumed raw or after cooking, being mainly consumed cooked, there was the interest to know if cooking could influence bioactive compounds content and antioxidant activity since high temperatures are related to benefits losses in food. This research aimed to compare the content of bioactive compounds and the antioxidant activity between in natura and cooked Japanese gherkin. Gherkins were submitted to quantification of carotenoids, anthocyanins, vitamin C and phenolic compounds, in addition to the antioxidant activity analyses through the ferric reducing antioxidant power (FRAP) and the DPPH free radical scavenging methods. After cooking, carotenoids (from 4.90 to 4.59 ?g.g-1) and phenolic compounds (from 17.07 to 14.95 mg.100 g-1) content decreased, but with no significant difference between in natura and cooked samples. As for the antioxidant activity, the in natura gherkin showed a higher value (3.31 ?M Ferrous Sulfate.g-1) than the cooked one (1.96 ?M Ferrous Sulfate.g-1) for FRAP method, while for DPPH method no difference between the samples was detected. Anthocyanin and vitamin C were not detected in gherkins. We concluded that, in general, cooking did not affect the bioactive compounds of gherkins and that antioxidant activity increased.

Downloads

Não há dados estatísticos.

Referências

Ahmed, F. A.; Ali, R. F. M. 2013. Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. BioMed Research International, 2013, 1-9. doi.org/10.1155/2013/367819

Angelo, P. M.; Jorge, N. 2007. Compostos fenólicos em alimentos – uma breve revisão. Revista Instituto Adolfo Lutz, 66, 232-240.

Bernhardt, S.; Schlich, E. 2006. Impact of different cooking methods on food quality: retention of lipophilic vitamins in fresh and frozen vegetables. Journal of Food Engineering, 7, (1), 327-333. doi:10.1016/j.jfoodeng.2005.06.040

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. 2010. Manual de hortaliças não-convencionais. Brasília: Mapa/ACS. Available in: <http://www.abcsem.com.br/docs/manual_hortalicas_web.pdf>

Campos, F. M.; Martino, H. S. D.; Sabarense, C. M.; Pinheiro-Sant’ana, H. M. 2008. Estabilidade de compostos antioxidantes em hortaliças processadas: uma revisão. Alimento e Nutrição, 19, (4), 481-490.

Dewanto, V.; Wu, X. Z.; Adom, K. K.; Liu, R. H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010–3014. doi:10.1021/jf0115589

Dick, A. E.; John, O. O.; No, P. A.; Elvis, N. I.; Uwaifiokun, O. C. 2016. Comparative studies of the phytochemistry, proximate analysis, mineral and vitamin compositions of the methanol leaf extracts of Cucumis sativus L. and Daucus carota L. International Journal of Phamacological Research, 6, (8), 282-285. doi: 10.7439/ijpr/16

Dudonné, S.; Vitrac, X.; Coutiére, P.; Woillez, M.; Mérillon, J. M. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57, (5), 1768-1774. doi:10.1021/jf803011r

Dzomba, P.; Mupa, M. 2012. Wild Cucumis anguria leaves: phytochemical profile and antioxidant capacity. Asian Pacific Journal of Tropical Biomedicine, 1, 1-5.

Eggersdorfer, M.; Wyss, A. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26. doi:10.1016/j.abb.2018.06.001

Faller, A. L. K.; Fialho, E. 2009. The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, 42, (1), 210-215. doi:10.1016/j.foodres.2008.10.009

Fuleki, T.; Francis, F. J. 1968a. Quantitative methods for anthocyanins: 1. Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33, (1), 72-77. doi.org/10.1111/j.1365-2621.1968.tb00887.x

Fuleki, T.; Francis, F. J. 1968b. Quantitative Methods for anthocyanins: 2. Determination of total anthocyanin and degradation index for cranberries juices. Journal of Food Science, 33, (1), 78-83. doi.org/10.1111/j.1365-2621.1968.tb00888.x

Fusco, M.; Tortolini, C.; Deriu, D.; Mazzei, F. 2010. Laccase-based biosensor for the determination of polyphenol index in wine. Talanta, 81, (1-2), 235-240. doi:10.1016/j.talanta.2009.11.063

Gill, N. S.; Mahajan, A.; Arora, R. 2014. Isolation and characterisation of Cucumis anguria seeds for their therapeutic potential. Indo American Journal of Pharmaceutical Research, 4, (7), 3208-2316.

He, X.; Li, X.; Lv, Y.; He, Q. 2015. Composition and color stability of anthocyanin-based extract from purple sweet potato. Food Science and Technology, 35, (3), 468-473. doi:10.1590/1678-457x.6687

Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J. A.; Navarro-Cruz, A. R.; Corona-Jiménez, E.; Ochoa-Velasco, C. E. 2016. Optimization of antioxidant compounds extraction from fruit by-products: apple pomace, orange and banana peel. Journal of Food Processing and Preservation, 40, (1), 103-115. doi:10.1111/jfpp.12588

Hwang, Y. P.; Choi, J. H.; Choi, J. M.; Chung, Y. C.; Jeong, H. G. 2011. Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity. Food and Chemical Toxicology, 49, (9), 2081–2089. doi:10.1016/j.fct.2011.05.021

Ismail, H. I.; Chan, K. W.; Mariod, A. A.; Ismail, M. 2010. Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chemistry, 119, 643-647. doi:10.1016/j.foodchem.2009.07.023

Kandlakunta, B.; Rajendran, A.; Thingnganing, L. 2008. Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chemistry, 106, 85–89. doi:10.1016/j.foodchem.2007.05.071

Larrauri, J. A.; Rupérez, P.; Saura-Calixto, F. 1997. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45, (4), 1390-1393.

Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q. 2014. Research progress of natural antioxidants in foods for the treatment of diseases. Food Science and Human Wellness, 3, (3-4), 110–116. doi:10.1016/j.fshw.2014.11.002

Magalhães, L. M.; Segundo, M. A.; Reis, S.; Lima, J. L. F. C. 2008. Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613, (1), 1-19. doi:10.1016/j.aca.2008.02.047

Melo, E. A.; Maciel, M. I. S.; Lima, V. L. A. G.; Santana, A. P. M. 2009. Capacidade antioxidante de hortaliças submetidas a tratamento térmico. Nutrire: Revista da Sociedade Brasileira de Alimentação e Nutrição, 34, (1), 85-95.

Nascimento, A. M. C. B.; Nunes, R. G. F. L.; Nunes, L. A. P. L. 2011. Elaboração e avaliação química, biológica e sensorial de conserva de maxixe (Cucumis anguria). Revista ACTA Tecnológica, 6, (1), 123-136.

Nayak, B.; Liu, R. H.; Tang, J. 2015. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-A Review. Critical Reviews in Food Science and Nutrition, 55, (7), 887-918. doi: 10.1080/10408398.2011.654142.

Obanda, M.; Owuor, P.O. 1977. Flavanol composition and caffeine content of green leaf as quality potential indication of Kenyan black teas. Journal of the Science of Food and Agriculture, 74, (2), 209-215.

Oliveira, A. P.; Oliveira, F. J. V.; Silva, J. A.; Oliveira, A. N. P.; Santos, R. R.; Silva, D. F. 2010. Parcelamento e fontes de nitrogênio para produção de maxixe. Horticultura Brasileira, 28, (2), 218-221.

Oliveira, F. A.; Oliveira, M. K. T.; Lima, L. A.; Bezerra, F. M. S.; Alves, R. C.; Linhares, P. S. F. 2015. Fertirrigação nitrogenada em cultivares do maxixeiro cultivadas em substrato de fibra de coco. Irriga, 20, (2), 388-400. doi: 10.15809/irriga.2015v20n2p388

Oliveira, F. A.; Oliveira, M. K.T.; Medeiros, J. F.; Silva, O. M. P.; Paiva, E. P.; Maia, P. M. E. 2014. Produtividade do maxixeiro cultivado em substrato e fertirrigado com soluções nutritivas. Horticultura brasileira, 32, (4), 464-467.doi.org/10.1590/S0102-053620140000400015.

Oliveira, J. M. S. P.; Nascimento, A. L. S.; Vitória, M. F.; Ramos, S. R. R.; Silva, A. V. C. 2016. Alterações em abóbora após cocção. Núcleus, 13, (2), 25-30.

Pandey, K. B.; Rizvi, S. I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2, (5), 270-278. doi:10.4161/oxim.2.5.9498

Pearson, D.; Cox, E. 1976. The chemical analysis of food. New York: Chem. Pubi.

Podsedek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Science and Technology, 40, (1), 1-11. doi:10.1016/j.lwt.2005.07.023

Regina, M. A.; Carmo, E. L.; Fonseca, A. R.; Purgatto, E.; Shiga, T. M.; Lajolo, F. M.; Ribeiro, A. P.; Mota, R. V. 2010. Influência da altitude na qualidade das uvas ‘Chardonnay’ e ‘Pinot noir’ em Minas Gerais. Revista Brasileira de Fruticultura, 32, (1), 143-150. doi:10.1590/s0100-29452010005000023

Rodriguez-Amaya, D. B. 1997. Análisis de carotenoides. In: Morón, C.; Zacarías, I.; Pablo, S.; Chile, S. Produccíon y manejo de datos de composicion química de alimentos em nutrición. (cap. 18, pp. 231-241). Universidad de Chile: Instituto de Nutrición y Tecnología de los Alimentos.

Rufino, M. S. M.; Alves, R. E.; Brito, E. S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. 2010. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121, (4), 996-1002. doi:10.1016/j.foodchem.2010.01.037

Souza Neta, M. L. de; Oliveira, F. D. A. de; Torres, S. B.; Souza, A. A. T.; Silva, D. D. A. da; Santos, S. T. dos. 2018. Gherkin cultivation in saline medium using seeds treated with a biostimulant. Acta Scientiarum. Agronomy, 40, (1), 35216. doi:10.4025/actasciagron.v40i1.35216

Teixeira, L. N.; Stringueta, P. C.; Oliveira, F. A. 2008. Comparação de métodos para quantificação de antocianinas. Revista CERES, 55, (4), 297-204.

Thaipong, K.; Boonprakob, U.; Crosby, K; Cisneroszevallos, L.; Byrne, D. H. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, (6-7), 669-675. doi:10.1016/j.jfca.2006.01.003

Tiveron, A. P.; Melo, P. S.; Bergamaschi, K. B.; Vieira, T. M. F. S.; Regitano-D’arce, M. A. B.; Alencar, S. M. 2013. Antioxidant activity of Brazilian vegetables and its relation with phenolic composition. International Journal of Molecular Sciences, 13, (7), 8943-8957. doi:10.3390/ijms13078943

Vallejo, F.; Tomás-Barberán, F.; Garcia-Viguera, C. 2003. Health promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. Journal of Agricultural and Food Chemistry, 51, (10), 3029–3034. doi:10.1021/jf021065j

Vieira, L. M.; Sousa, M. S. B.; Mancini-Filho, J.; Lima, A. 2011. Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira de Fruticultura, 33, (3), 888-897. doi:10.1590/s0100-29452011005000099

Zambrano-Moreno, E. L.; Chávez-Jáuregui, R. N.; Plaza, M. de L.; Wessel-Beaver, L. 2015. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Science and Technology, 35, (3), 414-420. doi:10.1590/1678-457x.6656

Downloads

Publicado

2022-03-13

Como Citar

Mendes, A. H. de L., Almeida, Érica J. do N., Moreira, L. F., Mendes, L. G., & Farias, V. L. de. (2022). Impact of cooking on the bioactive compounds and antioxidant activity of gherkin (Cucumis anguria L.). Journal of Environmental Analysis and Progress, 7(1), 033–040. https://doi.org/10.24221/jeap.7.01.2022.3889.033-040