Contaminação dos recursos hídricos por micropoluentes emergentes e os possíveis métodos de tratamento para sua remoção
DOI:
https://doi.org/10.24221/jeap.8.2.2023.4392.070-085Palavras-chave:
Microcontaminantes emergentes, contaminação hídrica, tratamento de águaResumo
A escassez dos recursos hídricos aliada ao aumento nos níveis de contaminação tem sido alvo de preocupação por toda a comunidade. Recentemente, foram detectados novos compostos poluidores, em concentrações que variam entre ng.L-1 e µ.L-1, denominados de Contaminantes Emergentes (CEs). Essas substâncias são potencialmente prejudiciais ao meio ambiente e à saúde humana, e dificilmente são removidas pelos tratamentos convencionais de água e esgoto. Assim, o estudo objetivou elaborar uma revisão narrativa sobre as principais rotas de entrada dos CEs no ambiente aquático, os efeitos causados pela presença desses poluentes na água, e apresentar soluções de tratamento para a remoção desses contaminantes micropoluentes. Os CEs são introduzidos na água, sobretudo, por meio de fontes antropogênicas (lixiviados de aterros sanitários e esgotos domésticos e industriais) e estão associados à feminilização de animais, doenças neurológicas, reprodutivas e imunológicas, redução da diversidade de microinvertebrados nos rios e extinção de aves. Entre os métodos de tratamento, apresentam destaque na remoção dos CEs da água: o carvão ativado, filtração por membrana, filtração em margem, wetlands, lodos ativados, além dos processos oxidativos avançados. Cada uma dessas técnicas demonstra vantagens e desvantagens, sendo necessário um estudo mais acurado sobre as características do local a ser implantado o tratamento, a fim de determinar a mais adequada àquele ambiente.Downloads
Referências
Alidina, M.; Shewchuk, J.; Drewes, J. E. 2015. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems. Chemosphere, 122, 23-31. https://doi.org/10.1016/j.chemosphere.2014.10.064
Aquino, S. F.; Brandt, E. M. F.; Chernicharo, C. A. L. 2013. Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura. Engenharia Sanitária e Ambiental, 18, (3), 187-204. http://dx.doi.org/10.1590/S1413-41522013000300002
Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. 2016. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 11, (2), 387-401. http://dx.doi.org/10.4136/ambi-agua.1862
Araújo, R. K.; Wolff, D. B.; Carissimi, E. 2019. Fármacos em águas residuárias: efeitos ambientais e remoção em wetlands construídos. Revista DAE, 67, (218), 137-155. https://doi.org/10.4322/dae.2019.039
Arslan, A.; Topkaya, E.; Bingöl, D.; Veli, S. 2018. Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: Process optimization with response surface methodology approach. Sustainable Environment Research, 28, (2), 65-71. https://doi.org/10.1016/j.serj.2017.11.002
Bai, X.; Lutz, A.; Carroll, R.; Keteles, K.; Dahlin, K.; Murphy, M.; Nguyen, D. 2018. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere, 200, 133-142. https://doi.org/10.1016/j.chemosphere.2018.02.106
Benítez, F. J.; Real, F. J., Acero, J. L.; Casas, F. 2017. Use of ultrafiltration and nanofiltration processes for the elimination of three selected emerging contaminants: amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol. Environment Protection Engineering, 43, (3), 125-141. https://dx.doi.org/10.5277/epe170308
Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H. M. 2019. Emerging contaminants of high concern and their enzyme-assisted biodegradation - a review. Environment International, 124, 336-353. https://doi.org/10.1016/j.envint.2019.01.011
Bilal, M.; Iqbal, H. M.; Barceló, D. 2019. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Science of the Total Environment, 695, 133896-133912. https://doi.org/10.1016/j.scitotenv.2019.133896
Birch, G. F.; Drage, D. S.; Thompson, K.; Eaglesham, G.; Mueller, J. F. 2015. Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Marine Pollution Bulletin, 97, (1-2), 56-66. https://doi.org/10.1016/j.marpolbul.2015.06.038
Blum, K. M.; Andersson, P. L.; Ahrens, L.; Wiberg, K.; Haglund, P. 2018. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. Science of the Total Environment, 612, 1532-1542. https://doi.org/10.1016/j.scitotenv.2017.09.006
Borges, S. S.; Xavier, L. P.; Silva, A. C. D.; Aquino, S. F. D. 2016. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. Química Nova, 39, (7), 836-844. https://doi.org/10.5935/0100-4042.20160106
Brasil. Ministério da Saúde. 2011a. Portaria nº 2.914, de 12 de dezembro de 2011. Brasília, DF.
Brasil. Ministério do Meio Ambiente. 2005. Resolução nº 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente (CONAMA), Brasília, DF.
Brasil. Ministério do Meio Ambiente. 2011b. Resolução nº 430, de 13 de maio de 2011. Conselho Nacional do Meio Ambiente (CONAMA), Brasília, DF.
Buarque, P. M. C.; Lima; R. B. P.; Vidal, C. B.; Buarque, H. L. B; Firmino, P. I. M.; Santos, A. B. 2019. Enhanced removal of emerging micropollutants by applying microaeration to an anaerobic reactor. Engenharia Sanitária e Ambiental, 24, (4), 667-673. https://doi.org/10.1590/s1413-4152201920190030
Button, M.; Cosway, K.; Sui, J.; Weber, K. 2019. Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands. Science of the Total Environment, 649, 1017-1028. https://doi.org/10.1016/j.scitotenv.2018.08.395
Chen, R.; Hu, L.; Zhang, H.; Lin, D.; Wang, J.; Xu, D.; Gong, W.; Liang, H. 2022. Toward emerging contaminants removal using acclimated activated sludge in the gravity-driven membrane filtration system. Journal of Hazardous Materials, 438, 129541. http://dx.doi.org/10.1016/j.jhazmat.2022.129541
Chen, X.; Vollertsen, J.; Nielsen, J. L.; Dall, A. G.; Bester, K. 2015. Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology, 24, (10), 2073-2080. https://doi.org/10.1007/s10646-015-1548-z
Chu, L.; Chen, D.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. 2020. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. Journal of Hazardous Materials, 382, 121058-121056. https://doi.org/10.1016/j.jhazmat.2019.121058
Cornwell, E. R.; Goyette, J. O.; Sorichetti, R. J.; Allan, D. J.; Kashian, D. R.; Sibley, P. K.; Taylor, D. W.; Trick, C. G. 2015. Biological and chemical contaminants as drivers of change in the Great Lakes-St. Lawrence River basin. Journal of Great Lakes Research, 41, 119-130.
Costa, L. F.; Oliveira, D. G.; Moreira, F. M. S.; Urzedo, A. P. F. M.; Cestarolli, D. T.; Bernardes-Silva, A. C. 2018. Utilização de Biocarvão e Processos Oxidativos Avançados para Remoção do Propranolol de Efluentes Aquosos Simulados. Revista Virtual de Química, 10, (2), 295-312. https://doi.org/10.21577/1984-6835.20180023
Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. 2019. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water, 12, (1), 102. https://doi.org/10.3390/w12010102
Cunha, D. L.; Paula, L. M.; Silva, S. M. C.; Bila, D. M.; da Fonseca, E. M.; Oliveira; J. L. M. 2017. Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 12, (2), 249-262. http://dx.doi.org/10.4136/ambi-agua.1992
Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. 2019. Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301-308. https://doi.org/10.1016/j.jenvman.2019.01.116
Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Seczkowska, M.; Tarasiuk, B. 2019. Phenoxyacid pesticide adsorption on activated carbon–equilibrium and kinetics. Chemosphere, 214, 349-360. https://doi.org/10.1016/j.chemosphere.2018.09.088
Derylo-Marczewska, A.; Blachnio, M.; Marczewski; A. W., Swiatkowski, A.; Buczek, B. 2017. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chemical Engineering Journal, 308, 408-418. https://doi.org/10.1016/j.cej.2016.09.082
Dragon, K.; Drozdzynski, D.; Gorski, J.; Kruc, R. 2019. The migration of pesticide residues in groundwater at a bank filtration site (Krajkowo well field, Poland). Environmental Earth Sciences, 78, (20), 593. https://doi.org/10.1007/s12665-019-8598-0
Egea-Corbacho, A.; Ruiz, S. G.; Alonso, J. M. Q. 2019. Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full-scale pilot plant. Journal of cleaner production, 214, 514-523. https://doi.org/10.1016/j.jclepro.2018.12.297
Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M. 2014. Activated carbon for the removal of pharmaceutical residues from treated wastewater. Water Science and Technology, 69; (11), 2372-2380. https://doi.org/10.2166/wst.2014.172
Fang, H.; Zhang, H.; Han, L.; Mei, J.; Ge, Q.; Long, Z.; Yu, Y. 2018. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution, 243, 1206-1216. https://doi.org/10.1016/j.envpol.2018.09.080
Ferrando-Climent, L.; Gonzalez-Olmos, R.; Anfruns, A.; Aymerich, I.; Corominas, L.; Barceló, D.; Rodriguez-Mozaz, S. 2017. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment. Chemosphere, 168, 284-292. https://doi.org/10.1016/j.chemosphere.2016.10.057
Fijalkowski, K. 2019. Emerging contaminants in sludge (endocrine disruptors, pesticides, and pharmaceutical residues, including illicit drugs/controlled substances, etc.). In: Prasad, M. N. V.; de Campos Favas, P. J.; Vithanage, M.; Mohan, S. V. [eds.]. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, 1 ed., pp. 455-473.
Fischer, K.; Grimm, M.; Meyers, J.; Dietrich, C.; Gläser, R.; Schulze, A. 2015. Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. Journal of Membrane Science, 478, 49-57. https://doi.org/10.1016/j.memsci.2015.01.009
Fonseca, C. G. M. 2019. Remoção de micropoluentes de interesse emergente em matriz aquosa por adsorção em carvão ativado em pó e superfino. Dissertação de Mestrado, Universidade Estadual de Campinas. Campinas, São Paulo, Brasil. 148p.
Freitas, D. A.; Cabral, J. J. S. P.; Rocha, F. J. S.; Paiva, A. L. R.; Sens, M. L.; Veras, T. B. 2017. Cryptosporidium spp. and Giardia spp. removal by bank filtration at Beberibe River, Brazil. River Research and Applications, 33, (7), 1079-1087. https://doi.org/10.1002/rra.3151
Fujioka, T.; Kodamatani, H.; Yujue, W.; Yu, K. D.; Wanjaya, E. R.; Yuan, H.; Fang, M.; Snyder, S. A. 2020. Assessing the passage of small pesticides through reverse osmosis membranes. Journal of Membrane Science, 595, 117577. https://doi.org/10.1016/j.memsci.2019.117577
Gaffney, V. J.; Cardoso, V. V.; Rodrigues, A.; Ferreira, E.; Benoliel, M. J.; Almeida, C. M. 2014. Análise de fármacos em águas por SPE-UPLC-ESI-MS/MS. Química Nova, 37, (1), 138-149. https://doi.org/10.1590/S0100-40422014000100023
Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Batt, A. L.; Benson, R.; Boone, J. S.; Conerly, O.; Donohue, M. J.; King, N. D.; Kostich, M. S.; Mash, H. E.; Pfaller, S. L.; Schenck, K. M.; Simmons, J. E.; Varughese, E. A.; Vesper, S. J.; Villegas, N. E.; Wison, V. S. 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of the Total Environment, 581, 909-922. https://doi.org/10.1016/j.scitotenv.2016.12.004
Gogoi, A.; Mazumder, P.; Tyagi, V. K.; Chaminda, G. G. T.; Na, A. K.; Kumar, M. 2018. Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009
Gomes, J.; Costa, R.; Quinta-Ferreira, R. M.; Martins, R. C. 2017. Application of ozonation for pharmaceuticals and personal care products removal from water. Science of the Total Environment, 586, 265-283. https://doi.org/10.1016/j.scitotenv.2017.01.216
Griffero, L.; Alcántara-Durán, J.; Alonso, C.; Rodríguez-Gallego, L.; Moreno-González, D.; García-Reyes, J. F.; Molina-Díaz, A.; Pérez-Parada, A. 2019. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Science of the Total Environment, 697, 134058. http://dx.doi.org/10.1016/j.scitotenv.2019.134058
He, K.; Asada, Y.; Echigo, S.; Itoh, S. 2018. Biodegradation of pharmaceuticals and personal care products in the sequential combination of activated sludge treatment and soil aquifer treatment. Environmental Technology, 41, (3), 378-388. https://doi.org/10.1080/09593330.2018.1499810
Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J. M. 2010. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Research, 44, (12), 3669-3678. https://doi.org/10.1016/j.watres.2010.04.022
Hubetska, T.; Kobylinska, N.; García, J. R. 2020. Efficient adsorption of pharmaceutical drugs from aqueous solution using a mesoporous activated carbon. Adsorption, 26, (2), 251-266. https://doi.org/10.1007/s10450-019-00143-0
Ignatowicz, K.; Puchlik, M.; Ozowicki, J. 2020. Removal of pesticides from wastewater by the use of constructed wetlands. Journal of Ecological Engineering, 21, (1), 219-223.
Ilyas, H.; Van Hullebusch, E. D. 2020. Performance comparison of different constructed wetlands designs for the removal of personal care products. International Journal of Environmental Research and Public Health, 17, (9), 3091. https://doi.org/10.3390/ijerph17093091
Jaramillo, M.; Grischek, T.; Boernick, H.; Velez, J. I. 2019. Evaluation of riverbank filtration in the removal of pesticides: an approximation using column experiments and contaminant transport modeling. Clean Technologies and Environmental Policy, 21, (1), 179-199. https://doi.org/10.1007/s10098-018-1627-y
Jin, Z.; Pan, Z.; Yu, S.; Lin, C. 2010. Experimental study on pressurized activated sludge process for high concentration pesticide wastewater. Journal of Environmental Sciences, 22, (9), 1342-1347. https://doi.org/10.1016/S1001-0742(09)60260-6
Kapelewska, J.; Kotowska, U.; Karpi?ska, J.; Kowalczuk, D.; Arciszewska, A.; ?wirydo, A. 2018. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchemical Journal, 137, 292-301. https://doi.org/10.1016/j.microc.2017.11.008
Kårelid, V.; Larsson, G.; Björlenius, B. 2017. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. Journal of Environmental Management, 193, 491-502. https://doi.org/10.1016/j.jenvman.2017.02.042
Karimi, H.; Rahimpour, A.; Kebria, M. R. S. 2016. Pesticides removal from water using modified piperazine-based nanofiltration (NF) membranes. Desalination And Water Treatment, 57, (52), 24844-24854. http://dx.doi.org/10.1080/19443994.2016.1156580
Katsigiannis, A.; Noutsopoulos, C.; Mantziaras, J.; Gioldasi, M. 2015. Removal of emerging pollutants through granular activated carbon. Chemical Engineering Journal, 280, 49-57. https://doi.org/10.1016/j.cej.2015.05.109
Kozak, C.; Schirmer, W. N.; Gomes, S.; Fonseca, A. F. 2014. Verifying the efficacy in removing nutrients using wastewater treatment stations by constructed wetlands. Recursos Hídricos, 35, (1), 69-76. https://doi.org/10.5894/rh35n1-5
Kru?, R.; Dragon, K.; Górski, J. 2019. Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water, 11, (11), 2238-2249. https://doi.org/10.3390/w11112238
Krzeminski, P.; Schwermer, C.; Wennberg, A.; Langford, K.; Vogelsang, C. 2017. Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. Journal of Hazardous Materials, 323, 166-176. https://doi.org/10.1016/j.jhazmat.2016.08.001
Kümmerer, K. 2010. Pharmaceuticals in the environment. Annual Review of Environment and Resources, 35, (1), 57-75. https://doi.org/10.1146/annurev-environ-052809-161223
Lapworth, D. J.; Baran, N.; Stuart, M. E.; Ward, R. S. 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
Ledakowicz, S.; Drozdek, E.; Boruta, T.; Foszpa?czyk, M.; Olak-Kucharczyk, M.; ?y??a, R.; Gmurek, M. 2019. Impact of Hydrogen Peroxide on the UVC Photolysis of Diclofenac and Toxicity of the Phototransformation Products. International Journal of Photoenergy, 2019, 1-11. http://dx.doi.org/10.1155/2019/1086704
Lee, S. H.; Kim, K. H.; Lee, M.; Lee, B. D. 2019. Detection status and removal characteristics of pharmaceuticals in wastewater treatment effluent. Journal of Water Process Engineering, 31, 100828-100834. https://doi.org/10.1016/j.jwpe.2019.100828
Lofrano, G.; Libralato, G.; Meric, S.; Vaiano, V.; Sacco, O.; Venditto, V.; Guida, M.; Carotenuto, M. 2020. Occurrence and potential risks of emerging contaminants in water. In: Sacco, O.; Vaiano, V. [eds.]. Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants: Science and Engineering, 1 ed., 1, pp. 1-25. http://dx.doi.org/10.1016/b978-0-12-818334-2.00001-8
Luque-Espinar, J. A.; Navas, N.; Chica-Olmo, M.; Cantarero-Malagón, S.; Chica-Rivas, L. 2015. Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): pollution of raw drinking water. Journal of Hydrology, 531, 612-625. https://doi.org/10.1016/j.jhydrol.2015.10.066
Lyu, T.; Zhang, L.; Xu, X.; Arias, C. A.; Brix, H.; Carvalho, P. N. 2018. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 233, 71-80. https://doi.org/10.1016/j.envpol.2017.10.040
Mahabali, S.; Spanoghe, P. 2014. Mitigation of two insecticides by wetland plants: feasibility study for the treatment of agricultural runoff in Suriname (South America). Water, Air, & Soil Pollution, 225, (1), 1771. https://doi.org/10.1007/s11270-013-1771-2
Marien, C. B. D.; Pvert, M. L.; Azaïs, A.; M’Bra, I. C.; Drogui, P.; Dirany, A.; Robert, D. 2019. Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, 370, 164-171. https://doi.org/10.1016/j.jhazmat.2018.06.009
Melo, S. A. S.; Trovó, A. G.; Bautitz, I. R.; Nogueira, R. F. P. 2009. Degradação de fármacos residuais por processos oxidativos avançados. Química Nova, 32, (1), 188-197. https://doi.org/10.1590/S0100-40422009000100034
Min, X.; Li, W.; Wei, Z.; Spinney, R.; Dionysiou, D. D.; Seo, Y.; Tang, C-J.; Xiao, R. 2018. Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: A combined experimental and theoretical mechanistic study. Chemical Engineering Journal, 342, 211-219. https://doi.org/10.1016/j.cej.2018.01.012
Mondal, B.; Adak, A.; Datta, P. 2019. Degradation of anionic surfactant in municipal wastewater by UV-H2O2: Process optimization using response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry, 375, 237-243. https://doi.org/10.1016/j.jphotochem.2019.02.030
Montagner, C. C.; Vidal, C.; Acayaba, R. D. 2017. Contaminantes emergentes em matrizes aquáticas no Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova, 40, (9), 1094-1110. https://doi.org/10.21577/0100-4042.20170091
Monteoliva-García, A.; Martín-Pascual, J.; Muñío, M. M.; Poyatos, J. M. 2019. Removal of carbamazepine, ciprofloxacin and ibuprofen in real urban wastewater by using light-driven advanced oxidation processes. International Journal of Environmental Science and Technology, 16, (10), 6005-6018. https://doi.org/10.1007/s13762-019-02365-9
Moreira, A. J.; Maldi, C. P.; Freschi, G. P. G. 2019. Aplicação de processo fotocatalítico mediado por dióxido de titânio para degradação de Sertralina. Acta Brasiliensis, 3, (1), 17-20. https://doi.org/10.22571/2526-4338117
Moreira, J. C. 2013. Contaminantes Emergentes. Revista de Química Industrial, 1, (738), 4-13.
Muter, O.; Ingus, P.; Selga, T.; Berzins, A.; Gudra, D.; Radovica-Spalvina, I.; Fridsmanis, D.; Bartkevics, V. 2017. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. Science of the Total Environment, 584, 402-413. https://doi.org/10.1016/j.scitotenv.2017.01.023
Nagy-Kovács, Z.; László, B.; Fleit, E.; Czichat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. 2018. Behavior of organic micropollutants during river bank filtration in Budapest, Hungary. Water, 10, (12), 1861. https://doi.org/10.3390/w10121861
Naidu, R.; Espana, V. A. A.; Liu, Y.; Jit, J. 2016. Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere, 154, 350-357. https://doi.org/10.1016/j.chemosphere.2016.03.068
Nassar, R.; Trivella, A.; Mokh, S.; Al-Iskandarani, M.; Budzinski, H.; Mazellier, P. 2017. Photodegradation of sulfamethazine, sulfamethoxypiridazine, amitriptyline, and clomipramine drugs in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 336, 176-182. https://doi.org/10.1016/j.jphotochem.2016.12.008
Nawaz, T.; Sengupta, S. 2019. Contaminants of Emerging Concern: Occurrence, Fate, and Remediation. Advances in Water Purification Techniques, 67-114. https://doi.org/10.1016/B978-0-12-814790-0.00004-1
Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R. A. 2019. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Science of the Total Environment, 649, 1144-1156. https://doi.org/10.1016/j.scitotenv.2018.08.339
Oberg, G.; Leopold, A. 2019. On the role of review papers in the face of escalating publication rates-a case study of research on contaminants of emerging concern (CECs). Environment International, 131, 1-16. https://doi.org/10.1016/j.envint.2019.104960
Oberleitner, D.; Schulz, W.; Bergmann, A.; Achten, C. 2020. Impact of seasonality, redox conditions, travel distances and initial concentrations on micropollutant removal during riverbank filtration at four sites. Chemosphere, 250, 126255. https://doi.org/10.1016/j.chemosphere.2020.126255
Oliveira, D. M.; Cavalcante, R. P.; Silva, L. M.; Sans, C.; Esplugas, S.; Oliveira, S. C.; Machuelek Junior, A. 2018. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes. Environmental Science and Pollution Research, 26, 4348-4366. https://doi.org/10.1007/s11356-018-1342-6
Pacheco, I. S.; Amaral, F. A.; Canobre, S. C. 2019. Utilização de hidróxidos duplos lamelares para a remoção do contaminante emergente diclofenaco. Brazilian Journal of Development, 5, (4), 3796-3802.
Park, J.; Yamashita, N.; Tanaka, H. 2018. Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere, 197, 467-476. https://doi.org/10.1016/j.chemosphere.2018.01.063
Paucar, N. E.; Kim, I.; Tanaka, H.; Sato, C. 2019. Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater. Ozone: Science & Engineering, 41, (1), 3-16. https://doi.org/10.1080/01919512.2018.1482456
Pérez-Lucas, G.; Aliste, M.; Vela, N.; Garrido, I.; Fenoll, J.; Navarro, S. 2020. Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Process Safety and Environmental Protection, 137, 358-365. https://doi.org/10.1016/j.psep.2020.02.039
Petrie, B.; Rood, S.; Smith, B. D.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. 2018. Biotic phase micropollutant distribution in horizontal sub-surface flow constructed wetlands. Science of the total environment, 630, 648-657. https://doi.org/10.1016/j.scitotenv.2018.02.242
Pinho, E. A. S.; Ferreira, L. F. R.; Américo-Pinheiro, J. H. P.; Torres, N. H. 2017. Tratamento de esgoto sanitário contendo micropoluentes no Brasil: revisão. Bioenergia em Revista: Diálogos, 7, (2), 46-63.
Ramírez-Malule, H.; Quiñones-Murillo, D. H.; Manotas-Duque, D. 2020. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerging Contaminants, 6, 179-193. https://doi.org/10.1016/j.emcon.2020.05.001
Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H. M. 2019. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52-66. https://doi.org/10.1016/j.envint.2018.11.038
Rathi, B. S.; Kumar, P. S. 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. http://dx.doi.org/10.1016/j.envpol.2021.116995
Reis, E. O.; Foureaux, A. F. S.; Rodrigues, J. S.; Moreira, V. R.; Lebron, Y. A.; Santos, L. V.; Amaral, M. C. S.; Lange, L. C. 2019. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environmental Pollution, 250, 773-781. https://doi.org/10.1016/j.envpol.2019.04.102
Ríos, F.; Olak-Kucharczyk, M.; Gmurek, M.; Ledakowicz, S. 2017. Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2/UVC system. Archives of Environmental Protection, 43, (1), 20-26. https://doi.org/10.1515/aep-2017-0003
Riva, F.; Castiglioni, S.; Fattore, E.; Manenti, A.; Davoli, E.; Zuccato, E. 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. International Journal of Hygiene and Environmental Health, 221, (3), 451-457. https://doi.org/10.1016/j.ijheh.2018.01.008
Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M. Á.; Prados-Joya, G.; Ocampo-Pérez, R. 2013. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere, 93, (7), 1268-1287. http://dx.doi.org/10.1016/j.chemosphere.2013.07.059
Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D. J.; Christy, A. G.; Beavis, S. G. 2016. Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625-1637. https://doi.org/10.1016/j.scitotenv.2015.03.145
Rodriguez-Narvaez, O. M.; Peralta-Hernandez, J. M.; Goonetilleke, A.; Bandala, E. R. 2017. Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106
Sato, C.; Kim, I.; Tanaka, H. 2016. Effect of H2O2 on UV photo-oxidation of pharmaceuticals and personal care products in wastewater. Journal of Environmental Engineering, 142, (11), 04016055. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001132
Sharma, B. M.; Be?anová, J.; Scheringer, M.; Sharma, A.; Bharat, G. K.; Whitehead, P. G.; Klánová, J.; Nizzetto, L. 2019. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of the Total Environment, 646, 1459-1467. https://doi.org/10.1016/j.scitotenv.2018.07.235
Soares, A. F. S.; Leão, M. M. D. 2015. Contaminação dos mananciais por micropoluentes e a precária remoção desses contaminantes nos tratamentos convencionais de água para potabilização. De Jure: Revista Jurídica do Ministério Público do Estado de Minas Gerais, 14, (24), 36-85.
Solís, R. R.; Gimeno, O.; Rivas, F. J.; Beltrán, F. J. 2019b. Simulated solar driven photolytic ozonation for the oxidation of aqueous recalcitrant-to-ozone tritosulfuron. Transformation products and toxicity. Journal of Environmental Management, 233, 513-522. https://doi.org/10.1016/j.jenvman.2018.12.068
Solís, R. R.; Medina, S.; Gimeno, O.; Beltrán, F. J. 2019a. Solar photolytic ozonation for the removal of recalcitrant herbicides in river water. Separation and Purification Technology, 212, 280-288. https://doi.org/10.1016/j.seppur.2018.11.035
Sorensen, J. P. R.; Lapworth, D. J.; Nkhuwa, D. C. W.; Stuart, M. E.; Gooddy, D. C.; Bell, R. A.; Chirwa, M.; Kabika, J.; Liemisa, M.; Chibesa, M.; Pedley, S. 2015. Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51-63. https://doi.org/10.1016/j.watres.2014.08.002
Suarez, S.; Lema, J. M.; Omil, F. 2010. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, (10), 3214-3224. https://doi.org/10.1016/j.watres.2010.02.040
Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C. P. 2016. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 208, 371-381. https://doi.org/10.1016/j.envpol.2015.10.003
Suo, F.; Liu, X.; Li, C.; Yuan, M.; Zhang, B.; Wang, J.; Ji, M. 2019. Mesoporous activated carbon from starch for superior rapid pesticides removal. International Journal of Biological Macromolecules, 121, 806-813. https://doi.org/10.1016/j.ijbiomac.2018.10.132
Szabová, P.; Hencelová, K.; Sameliaková, Z.; Marcová, T.; Sta?ová, A. V.; Grabicová, K.; Bodík, I. 2020. Ozonation: efective way for removal of pharmaceuticals from wastewater. Monatshefte für Chemie - Chemical Monthly, 151, 685-691. https://doi.org/10.1007/s00706-020-02600-x
Taheran, M.; Brar, S. K.; Verma, M.; Surampalli, R. Y.; Zhang, T. C.; Valéro, J. R. 2016. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Science of the Total Environment, 547, 60-77. https://doi.org/10.1016/j.scitotenv.2015.12.139
Tazdaït, D.; Salah, R.; Grib, H.; Abdi, N.; Mameri, N. 2018. Kinetic study on biodegradation of glyphosate with unacclimated activated sludge. International Journal of Environmental Health Research, 28, (4), 448-459. https://doi.org/10.1080/09603123.2018.1487043
Tran, N. H.; Reinhard, M.; Gin, K. Y. H. 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182-207. https://doi.org/10.1016/j.watres.2017.12.029
Tröger, R.; Köhler, S. J.; Franke, V.; Bergstedt, O.; Wiberg, K. 2020. A case study of organic micropollutants in a major Swedish water source–Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. Science of the Total Environment, 706, 135680. https://doi.org/10.1016/j.scitotenv.2019.135680
Valhondo, C.; Carrera, J.; Martínez-Landa, L.; Wang, J.; Amalfitano, S.; Levantesi, C.; Diaz-Cruz, M. S. 2020. Reactive Barriers for Renaturalization of Reclaimed Water during Soil Aquifer Treatment. Water, 12, (4), 1012. https://doi.org/10.3390/w12041012
Van Driezum, I. H.; Derx, J., Oudega, T. J.; Zessner, M.; Naus, F. L.; Saracevic, E.; Blaschke, A. P. 2019. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Science of the Total Environment, 649, 212-223. https://doi.org/10.1016/j.scitotenv.2018.08.300
Viegas, R. M. C.; Mesquita, E.; Martins, A.; Rosa, M. J. 2020. Estratégias de reforço físico-químico com carvão ativado em pó para controle de fármacos em ETAR. Águas e Resíduos. 4, (6), 18-27. https://doi.org/10.22181/aer.2020.0602
Von Sperling, M.; Sezerino, P. H. 2018. Dimensionamento de wetlands construídos no Brasil. Wetlands, 2359-0548.
Wang, S.; Wang, J. 2017. Degradation of emerging contaminants by acclimated activated sludge. Environmental Technology, 39, (15), 1985-1993. https://doi.org/10.1080/09593330.2017.1345989
Wilkinson, J.; Hooda, P. S.; Barker, J.; Barton, S.; Swinden, J. 2017. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954-970. https://doi.org/10.1016/j.envpol.2017.08.032
Williams, M.; Kookana, R. S.; Mehta, A.; Yadav, S. K.; Tailor, B. L.; Maheshwari, B. 2019. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Science of the Total Environment, 647, 1256-1265. https://doi.org/10.1016/j.scitotenv.2018.08.084
Yadav, M. K.; Short, M. D.; Gerber, C.; van den Akker, B.; Aryal, R.; Saint, C. P. 2019. Occurrence, removal and environmental risk of markers of five drugs of abuse in urban wastewater systems in South Australia. Environmental Science and Pollution Research, 26, (33), 33816-33826. https://doi.org/10.1007/s11356-018-2464-6
Yang, L.; He, J. T.; Su, S. H.; Cui, Y. F.; Huang, D. L.; Wang, G. C. 2017. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environmental Science and Pollution Research, 24, (18), 15838-15851. https://doi.org/10.1007/s11356-017-8999-0
Yang, X.; Flowers, R. C.; Weinberg, H. S.; Singer, P. C. 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 45, (16), 5218-5228. https://doi.org/10.1016/j.watres.2011.07.026
Zhang, L.; Lyu, T.; Vargas, C. A. R.; Arias, C. A.; Carvalho, P. N.; Brix, H. 2018. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution, 240, 699-708. https://doi.org/10.1016/j.envpol.2018.05.028
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Renatha Michelly Sabino dos Santos, Raquel Ferreira do Nascimento, Lucas Caitano da Silva, José Adson Andrade de Carvalho Filho, Anderson Luiz Ribeiro de Paiva
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author