Contaminação dos recursos hídricos por micropoluentes emergentes e os possíveis métodos de tratamento para sua remoção

Autores

DOI:

https://doi.org/10.24221/jeap.8.2.2023.4392.070-085

Palavras-chave:

Microcontaminantes emergentes, contaminação hídrica, tratamento de água

Resumo

A escassez dos recursos hídricos aliada ao aumento nos níveis de contaminação tem sido alvo de preocupação por toda a comunidade. Recentemente, foram detectados novos compostos poluidores, em concentrações que variam entre ng.L-1 e µ.L-1, denominados de Contaminantes Emergentes (CEs). Essas substâncias são potencialmente prejudiciais ao meio ambiente e à saúde humana, e dificilmente são removidas pelos tratamentos convencionais de água e esgoto. Assim, o estudo objetivou elaborar uma revisão narrativa sobre as principais rotas de entrada dos CEs no ambiente aquático, os efeitos causados pela presença desses poluentes na água, e apresentar soluções de tratamento para a remoção desses contaminantes micropoluentes. Os CEs são introduzidos na água, sobretudo, por meio de fontes antropogênicas (lixiviados de aterros sanitários e esgotos domésticos e industriais) e estão associados à feminilização de animais, doenças neurológicas, reprodutivas e imunológicas, redução da diversidade de microinvertebrados nos rios e extinção de aves. Entre os métodos de tratamento, apresentam destaque na remoção dos CEs da água: o carvão ativado, filtração por membrana, filtração em margem, wetlands, lodos ativados, além dos processos oxidativos avançados. Cada uma dessas técnicas demonstra vantagens e desvantagens, sendo necessário um estudo mais acurado sobre as características do local a ser implantado o tratamento, a fim de determinar a mais adequada àquele ambiente.

Downloads

Não há dados estatísticos.

Referências

Alidina, M.; Shewchuk, J.; Drewes, J. E. 2015. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems. Chemosphere, 122, 23-31. https://doi.org/10.1016/j.chemosphere.2014.10.064

Aquino, S. F.; Brandt, E. M. F.; Chernicharo, C. A. L. 2013. Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura. Engenharia Sanitária e Ambiental, 18, (3), 187-204. http://dx.doi.org/10.1590/S1413-41522013000300002

Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. 2016. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 11, (2), 387-401. http://dx.doi.org/10.4136/ambi-agua.1862

Araújo, R. K.; Wolff, D. B.; Carissimi, E. 2019. Fármacos em águas residuárias: efeitos ambientais e remoção em wetlands construídos. Revista DAE, 67, (218), 137-155. https://doi.org/10.4322/dae.2019.039

Arslan, A.; Topkaya, E.; Bingöl, D.; Veli, S. 2018. Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: Process optimization with response surface methodology approach. Sustainable Environment Research, 28, (2), 65-71. https://doi.org/10.1016/j.serj.2017.11.002

Bai, X.; Lutz, A.; Carroll, R.; Keteles, K.; Dahlin, K.; Murphy, M.; Nguyen, D. 2018. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere, 200, 133-142. https://doi.org/10.1016/j.chemosphere.2018.02.106

Benítez, F. J.; Real, F. J., Acero, J. L.; Casas, F. 2017. Use of ultrafiltration and nanofiltration processes for the elimination of three selected emerging contaminants: amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol. Environment Protection Engineering, 43, (3), 125-141. https://dx.doi.org/10.5277/epe170308

Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H. M. 2019. Emerging contaminants of high concern and their enzyme-assisted biodegradation - a review. Environment International, 124, 336-353. https://doi.org/10.1016/j.envint.2019.01.011

Bilal, M.; Iqbal, H. M.; Barceló, D. 2019. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Science of the Total Environment, 695, 133896-133912. https://doi.org/10.1016/j.scitotenv.2019.133896

Birch, G. F.; Drage, D. S.; Thompson, K.; Eaglesham, G.; Mueller, J. F. 2015. Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Marine Pollution Bulletin, 97, (1-2), 56-66. https://doi.org/10.1016/j.marpolbul.2015.06.038

Blum, K. M.; Andersson, P. L.; Ahrens, L.; Wiberg, K.; Haglund, P. 2018. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. Science of the Total Environment, 612, 1532-1542. https://doi.org/10.1016/j.scitotenv.2017.09.006

Borges, S. S.; Xavier, L. P.; Silva, A. C. D.; Aquino, S. F. D. 2016. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. Química Nova, 39, (7), 836-844. https://doi.org/10.5935/0100-4042.20160106

Brasil. Ministério da Saúde. 2011a. Portaria nº 2.914, de 12 de dezembro de 2011. Brasília, DF.

Brasil. Ministério do Meio Ambiente. 2005. Resolução nº 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente (CONAMA), Brasília, DF.

Brasil. Ministério do Meio Ambiente. 2011b. Resolução nº 430, de 13 de maio de 2011. Conselho Nacional do Meio Ambiente (CONAMA), Brasília, DF.

Buarque, P. M. C.; Lima; R. B. P.; Vidal, C. B.; Buarque, H. L. B; Firmino, P. I. M.; Santos, A. B. 2019. Enhanced removal of emerging micropollutants by applying microaeration to an anaerobic reactor. Engenharia Sanitária e Ambiental, 24, (4), 667-673. https://doi.org/10.1590/s1413-4152201920190030

Button, M.; Cosway, K.; Sui, J.; Weber, K. 2019. Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands. Science of the Total Environment, 649, 1017-1028. https://doi.org/10.1016/j.scitotenv.2018.08.395

Chen, R.; Hu, L.; Zhang, H.; Lin, D.; Wang, J.; Xu, D.; Gong, W.; Liang, H. 2022. Toward emerging contaminants removal using acclimated activated sludge in the gravity-driven membrane filtration system. Journal of Hazardous Materials, 438, 129541. http://dx.doi.org/10.1016/j.jhazmat.2022.129541

Chen, X.; Vollertsen, J.; Nielsen, J. L.; Dall, A. G.; Bester, K. 2015. Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology, 24, (10), 2073-2080. https://doi.org/10.1007/s10646-015-1548-z

Chu, L.; Chen, D.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. 2020. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. Journal of Hazardous Materials, 382, 121058-121056. https://doi.org/10.1016/j.jhazmat.2019.121058

Cornwell, E. R.; Goyette, J. O.; Sorichetti, R. J.; Allan, D. J.; Kashian, D. R.; Sibley, P. K.; Taylor, D. W.; Trick, C. G. 2015. Biological and chemical contaminants as drivers of change in the Great Lakes-St. Lawrence River basin. Journal of Great Lakes Research, 41, 119-130.

Costa, L. F.; Oliveira, D. G.; Moreira, F. M. S.; Urzedo, A. P. F. M.; Cestarolli, D. T.; Bernardes-Silva, A. C. 2018. Utilização de Biocarvão e Processos Oxidativos Avançados para Remoção do Propranolol de Efluentes Aquosos Simulados. Revista Virtual de Química, 10, (2), 295-312. https://doi.org/10.21577/1984-6835.20180023

Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. 2019. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water, 12, (1), 102. https://doi.org/10.3390/w12010102

Cunha, D. L.; Paula, L. M.; Silva, S. M. C.; Bila, D. M.; da Fonseca, E. M.; Oliveira; J. L. M. 2017. Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 12, (2), 249-262. http://dx.doi.org/10.4136/ambi-agua.1992

Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. 2019. Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301-308. https://doi.org/10.1016/j.jenvman.2019.01.116

Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Seczkowska, M.; Tarasiuk, B. 2019. Phenoxyacid pesticide adsorption on activated carbon–equilibrium and kinetics. Chemosphere, 214, 349-360. https://doi.org/10.1016/j.chemosphere.2018.09.088

Derylo-Marczewska, A.; Blachnio, M.; Marczewski; A. W., Swiatkowski, A.; Buczek, B. 2017. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chemical Engineering Journal, 308, 408-418. https://doi.org/10.1016/j.cej.2016.09.082

Dragon, K.; Drozdzynski, D.; Gorski, J.; Kruc, R. 2019. The migration of pesticide residues in groundwater at a bank filtration site (Krajkowo well field, Poland). Environmental Earth Sciences, 78, (20), 593. https://doi.org/10.1007/s12665-019-8598-0

Egea-Corbacho, A.; Ruiz, S. G.; Alonso, J. M. Q. 2019. Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full-scale pilot plant. Journal of cleaner production, 214, 514-523. https://doi.org/10.1016/j.jclepro.2018.12.297

Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M. 2014. Activated carbon for the removal of pharmaceutical residues from treated wastewater. Water Science and Technology, 69; (11), 2372-2380. https://doi.org/10.2166/wst.2014.172

Fang, H.; Zhang, H.; Han, L.; Mei, J.; Ge, Q.; Long, Z.; Yu, Y. 2018. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution, 243, 1206-1216. https://doi.org/10.1016/j.envpol.2018.09.080

Ferrando-Climent, L.; Gonzalez-Olmos, R.; Anfruns, A.; Aymerich, I.; Corominas, L.; Barceló, D.; Rodriguez-Mozaz, S. 2017. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment. Chemosphere, 168, 284-292. https://doi.org/10.1016/j.chemosphere.2016.10.057

Fijalkowski, K. 2019. Emerging contaminants in sludge (endocrine disruptors, pesticides, and pharmaceutical residues, including illicit drugs/controlled substances, etc.). In: Prasad, M. N. V.; de Campos Favas, P. J.; Vithanage, M.; Mohan, S. V. [eds.]. Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, 1 ed., pp. 455-473.

Fischer, K.; Grimm, M.; Meyers, J.; Dietrich, C.; Gläser, R.; Schulze, A. 2015. Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. Journal of Membrane Science, 478, 49-57. https://doi.org/10.1016/j.memsci.2015.01.009

Fonseca, C. G. M. 2019. Remoção de micropoluentes de interesse emergente em matriz aquosa por adsorção em carvão ativado em pó e superfino. Dissertação de Mestrado, Universidade Estadual de Campinas. Campinas, São Paulo, Brasil. 148p.

Freitas, D. A.; Cabral, J. J. S. P.; Rocha, F. J. S.; Paiva, A. L. R.; Sens, M. L.; Veras, T. B. 2017. Cryptosporidium spp. and Giardia spp. removal by bank filtration at Beberibe River, Brazil. River Research and Applications, 33, (7), 1079-1087. https://doi.org/10.1002/rra.3151

Fujioka, T.; Kodamatani, H.; Yujue, W.; Yu, K. D.; Wanjaya, E. R.; Yuan, H.; Fang, M.; Snyder, S. A. 2020. Assessing the passage of small pesticides through reverse osmosis membranes. Journal of Membrane Science, 595, 117577. https://doi.org/10.1016/j.memsci.2019.117577

Gaffney, V. J.; Cardoso, V. V.; Rodrigues, A.; Ferreira, E.; Benoliel, M. J.; Almeida, C. M. 2014. Análise de fármacos em águas por SPE-UPLC-ESI-MS/MS. Química Nova, 37, (1), 138-149. https://doi.org/10.1590/S0100-40422014000100023

Glassmeyer, S. T.; Furlong, E. T.; Kolpin, D. W.; Batt, A. L.; Benson, R.; Boone, J. S.; Conerly, O.; Donohue, M. J.; King, N. D.; Kostich, M. S.; Mash, H. E.; Pfaller, S. L.; Schenck, K. M.; Simmons, J. E.; Varughese, E. A.; Vesper, S. J.; Villegas, N. E.; Wison, V. S. 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Science of the Total Environment, 581, 909-922. https://doi.org/10.1016/j.scitotenv.2016.12.004

Gogoi, A.; Mazumder, P.; Tyagi, V. K.; Chaminda, G. G. T.; Na, A. K.; Kumar, M. 2018. Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009

Gomes, J.; Costa, R.; Quinta-Ferreira, R. M.; Martins, R. C. 2017. Application of ozonation for pharmaceuticals and personal care products removal from water. Science of the Total Environment, 586, 265-283. https://doi.org/10.1016/j.scitotenv.2017.01.216

Griffero, L.; Alcántara-Durán, J.; Alonso, C.; Rodríguez-Gallego, L.; Moreno-González, D.; García-Reyes, J. F.; Molina-Díaz, A.; Pérez-Parada, A. 2019. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Science of the Total Environment, 697, 134058. http://dx.doi.org/10.1016/j.scitotenv.2019.134058

He, K.; Asada, Y.; Echigo, S.; Itoh, S. 2018. Biodegradation of pharmaceuticals and personal care products in the sequential combination of activated sludge treatment and soil aquifer treatment. Environmental Technology, 41, (3), 378-388. https://doi.org/10.1080/09593330.2018.1499810

Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J. M. 2010. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Research, 44, (12), 3669-3678. https://doi.org/10.1016/j.watres.2010.04.022

Hubetska, T.; Kobylinska, N.; García, J. R. 2020. Efficient adsorption of pharmaceutical drugs from aqueous solution using a mesoporous activated carbon. Adsorption, 26, (2), 251-266. https://doi.org/10.1007/s10450-019-00143-0

Ignatowicz, K.; Puchlik, M.; Ozowicki, J. 2020. Removal of pesticides from wastewater by the use of constructed wetlands. Journal of Ecological Engineering, 21, (1), 219-223.

Ilyas, H.; Van Hullebusch, E. D. 2020. Performance comparison of different constructed wetlands designs for the removal of personal care products. International Journal of Environmental Research and Public Health, 17, (9), 3091. https://doi.org/10.3390/ijerph17093091

Jaramillo, M.; Grischek, T.; Boernick, H.; Velez, J. I. 2019. Evaluation of riverbank filtration in the removal of pesticides: an approximation using column experiments and contaminant transport modeling. Clean Technologies and Environmental Policy, 21, (1), 179-199. https://doi.org/10.1007/s10098-018-1627-y

Jin, Z.; Pan, Z.; Yu, S.; Lin, C. 2010. Experimental study on pressurized activated sludge process for high concentration pesticide wastewater. Journal of Environmental Sciences, 22, (9), 1342-1347. https://doi.org/10.1016/S1001-0742(09)60260-6

Kapelewska, J.; Kotowska, U.; Karpi?ska, J.; Kowalczuk, D.; Arciszewska, A.; ?wirydo, A. 2018. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchemical Journal, 137, 292-301. https://doi.org/10.1016/j.microc.2017.11.008

Kårelid, V.; Larsson, G.; Björlenius, B. 2017. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. Journal of Environmental Management, 193, 491-502. https://doi.org/10.1016/j.jenvman.2017.02.042

Karimi, H.; Rahimpour, A.; Kebria, M. R. S. 2016. Pesticides removal from water using modified piperazine-based nanofiltration (NF) membranes. Desalination And Water Treatment, 57, (52), 24844-24854. http://dx.doi.org/10.1080/19443994.2016.1156580

Katsigiannis, A.; Noutsopoulos, C.; Mantziaras, J.; Gioldasi, M. 2015. Removal of emerging pollutants through granular activated carbon. Chemical Engineering Journal, 280, 49-57. https://doi.org/10.1016/j.cej.2015.05.109

Kozak, C.; Schirmer, W. N.; Gomes, S.; Fonseca, A. F. 2014. Verifying the efficacy in removing nutrients using wastewater treatment stations by constructed wetlands. Recursos Hídricos, 35, (1), 69-76. https://doi.org/10.5894/rh35n1-5

Kru?, R.; Dragon, K.; Górski, J. 2019. Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water, 11, (11), 2238-2249. https://doi.org/10.3390/w11112238

Krzeminski, P.; Schwermer, C.; Wennberg, A.; Langford, K.; Vogelsang, C. 2017. Occurrence of UV filters, fragrances and organophosphate flame retardants in municipal WWTP effluents and their removal during membrane post-treatment. Journal of Hazardous Materials, 323, 166-176. https://doi.org/10.1016/j.jhazmat.2016.08.001

Kümmerer, K. 2010. Pharmaceuticals in the environment. Annual Review of Environment and Resources, 35, (1), 57-75. https://doi.org/10.1146/annurev-environ-052809-161223

Lapworth, D. J.; Baran, N.; Stuart, M. E.; Ward, R. S. 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034

Ledakowicz, S.; Drozdek, E.; Boruta, T.; Foszpa?czyk, M.; Olak-Kucharczyk, M.; ?y??a, R.; Gmurek, M. 2019. Impact of Hydrogen Peroxide on the UVC Photolysis of Diclofenac and Toxicity of the Phototransformation Products. International Journal of Photoenergy, 2019, 1-11. http://dx.doi.org/10.1155/2019/1086704

Lee, S. H.; Kim, K. H.; Lee, M.; Lee, B. D. 2019. Detection status and removal characteristics of pharmaceuticals in wastewater treatment effluent. Journal of Water Process Engineering, 31, 100828-100834. https://doi.org/10.1016/j.jwpe.2019.100828

Lofrano, G.; Libralato, G.; Meric, S.; Vaiano, V.; Sacco, O.; Venditto, V.; Guida, M.; Carotenuto, M. 2020. Occurrence and potential risks of emerging contaminants in water. In: Sacco, O.; Vaiano, V. [eds.]. Visible Light Active Structured Photocatalysts for the Removal of Emerging Contaminants: Science and Engineering, 1 ed., 1, pp. 1-25. http://dx.doi.org/10.1016/b978-0-12-818334-2.00001-8

Luque-Espinar, J. A.; Navas, N.; Chica-Olmo, M.; Cantarero-Malagón, S.; Chica-Rivas, L. 2015. Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): pollution of raw drinking water. Journal of Hydrology, 531, 612-625. https://doi.org/10.1016/j.jhydrol.2015.10.066

Lyu, T.; Zhang, L.; Xu, X.; Arias, C. A.; Brix, H.; Carvalho, P. N. 2018. Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 233, 71-80. https://doi.org/10.1016/j.envpol.2017.10.040

Mahabali, S.; Spanoghe, P. 2014. Mitigation of two insecticides by wetland plants: feasibility study for the treatment of agricultural runoff in Suriname (South America). Water, Air, & Soil Pollution, 225, (1), 1771. https://doi.org/10.1007/s11270-013-1771-2

Marien, C. B. D.; Pvert, M. L.; Azaïs, A.; M’Bra, I. C.; Drogui, P.; Dirany, A.; Robert, D. 2019. Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, 370, 164-171. https://doi.org/10.1016/j.jhazmat.2018.06.009

Melo, S. A. S.; Trovó, A. G.; Bautitz, I. R.; Nogueira, R. F. P. 2009. Degradação de fármacos residuais por processos oxidativos avançados. Química Nova, 32, (1), 188-197. https://doi.org/10.1590/S0100-40422009000100034

Min, X.; Li, W.; Wei, Z.; Spinney, R.; Dionysiou, D. D.; Seo, Y.; Tang, C-J.; Xiao, R. 2018. Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: A combined experimental and theoretical mechanistic study. Chemical Engineering Journal, 342, 211-219. https://doi.org/10.1016/j.cej.2018.01.012

Mondal, B.; Adak, A.; Datta, P. 2019. Degradation of anionic surfactant in municipal wastewater by UV-H2O2: Process optimization using response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry, 375, 237-243. https://doi.org/10.1016/j.jphotochem.2019.02.030

Montagner, C. C.; Vidal, C.; Acayaba, R. D. 2017. Contaminantes emergentes em matrizes aquáticas no Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova, 40, (9), 1094-1110. https://doi.org/10.21577/0100-4042.20170091

Monteoliva-García, A.; Martín-Pascual, J.; Muñío, M. M.; Poyatos, J. M. 2019. Removal of carbamazepine, ciprofloxacin and ibuprofen in real urban wastewater by using light-driven advanced oxidation processes. International Journal of Environmental Science and Technology, 16, (10), 6005-6018. https://doi.org/10.1007/s13762-019-02365-9

Moreira, A. J.; Maldi, C. P.; Freschi, G. P. G. 2019. Aplicação de processo fotocatalítico mediado por dióxido de titânio para degradação de Sertralina. Acta Brasiliensis, 3, (1), 17-20. https://doi.org/10.22571/2526-4338117

Moreira, J. C. 2013. Contaminantes Emergentes. Revista de Química Industrial, 1, (738), 4-13.

Muter, O.; Ingus, P.; Selga, T.; Berzins, A.; Gudra, D.; Radovica-Spalvina, I.; Fridsmanis, D.; Bartkevics, V. 2017. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. Science of the Total Environment, 584, 402-413. https://doi.org/10.1016/j.scitotenv.2017.01.023

Nagy-Kovács, Z.; László, B.; Fleit, E.; Czichat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. 2018. Behavior of organic micropollutants during river bank filtration in Budapest, Hungary. Water, 10, (12), 1861. https://doi.org/10.3390/w10121861

Naidu, R.; Espana, V. A. A.; Liu, Y.; Jit, J. 2016. Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere, 154, 350-357. https://doi.org/10.1016/j.chemosphere.2016.03.068

Nassar, R.; Trivella, A.; Mokh, S.; Al-Iskandarani, M.; Budzinski, H.; Mazellier, P. 2017. Photodegradation of sulfamethazine, sulfamethoxypiridazine, amitriptyline, and clomipramine drugs in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 336, 176-182. https://doi.org/10.1016/j.jphotochem.2016.12.008

Nawaz, T.; Sengupta, S. 2019. Contaminants of Emerging Concern: Occurrence, Fate, and Remediation. Advances in Water Purification Techniques, 67-114. https://doi.org/10.1016/B978-0-12-814790-0.00004-1

Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R. A. 2019. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Science of the Total Environment, 649, 1144-1156. https://doi.org/10.1016/j.scitotenv.2018.08.339

Oberg, G.; Leopold, A. 2019. On the role of review papers in the face of escalating publication rates-a case study of research on contaminants of emerging concern (CECs). Environment International, 131, 1-16. https://doi.org/10.1016/j.envint.2019.104960

Oberleitner, D.; Schulz, W.; Bergmann, A.; Achten, C. 2020. Impact of seasonality, redox conditions, travel distances and initial concentrations on micropollutant removal during riverbank filtration at four sites. Chemosphere, 250, 126255. https://doi.org/10.1016/j.chemosphere.2020.126255

Oliveira, D. M.; Cavalcante, R. P.; Silva, L. M.; Sans, C.; Esplugas, S.; Oliveira, S. C.; Machuelek Junior, A. 2018. Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes. Environmental Science and Pollution Research, 26, 4348-4366. https://doi.org/10.1007/s11356-018-1342-6

Pacheco, I. S.; Amaral, F. A.; Canobre, S. C. 2019. Utilização de hidróxidos duplos lamelares para a remoção do contaminante emergente diclofenaco. Brazilian Journal of Development, 5, (4), 3796-3802.

Park, J.; Yamashita, N.; Tanaka, H. 2018. Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere, 197, 467-476. https://doi.org/10.1016/j.chemosphere.2018.01.063

Paucar, N. E.; Kim, I.; Tanaka, H.; Sato, C. 2019. Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater. Ozone: Science & Engineering, 41, (1), 3-16. https://doi.org/10.1080/01919512.2018.1482456

Pérez-Lucas, G.; Aliste, M.; Vela, N.; Garrido, I.; Fenoll, J.; Navarro, S. 2020. Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Process Safety and Environmental Protection, 137, 358-365. https://doi.org/10.1016/j.psep.2020.02.039

Petrie, B.; Rood, S.; Smith, B. D.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. 2018. Biotic phase micropollutant distribution in horizontal sub-surface flow constructed wetlands. Science of the total environment, 630, 648-657. https://doi.org/10.1016/j.scitotenv.2018.02.242

Pinho, E. A. S.; Ferreira, L. F. R.; Américo-Pinheiro, J. H. P.; Torres, N. H. 2017. Tratamento de esgoto sanitário contendo micropoluentes no Brasil: revisão. Bioenergia em Revista: Diálogos, 7, (2), 46-63.

Ramírez-Malule, H.; Quiñones-Murillo, D. H.; Manotas-Duque, D. 2020. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerging Contaminants, 6, 179-193. https://doi.org/10.1016/j.emcon.2020.05.001

Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H. M. 2019. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52-66. https://doi.org/10.1016/j.envint.2018.11.038

Rathi, B. S.; Kumar, P. S. 2021. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. http://dx.doi.org/10.1016/j.envpol.2021.116995

Reis, E. O.; Foureaux, A. F. S.; Rodrigues, J. S.; Moreira, V. R.; Lebron, Y. A.; Santos, L. V.; Amaral, M. C. S.; Lange, L. C. 2019. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environmental Pollution, 250, 773-781. https://doi.org/10.1016/j.envpol.2019.04.102

Ríos, F.; Olak-Kucharczyk, M.; Gmurek, M.; Ledakowicz, S. 2017. Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2/UVC system. Archives of Environmental Protection, 43, (1), 20-26. https://doi.org/10.1515/aep-2017-0003

Riva, F.; Castiglioni, S.; Fattore, E.; Manenti, A.; Davoli, E.; Zuccato, E. 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. International Journal of Hygiene and Environmental Health, 221, (3), 451-457. https://doi.org/10.1016/j.ijheh.2018.01.008

Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M. Á.; Prados-Joya, G.; Ocampo-Pérez, R. 2013. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere, 93, (7), 1268-1287. http://dx.doi.org/10.1016/j.chemosphere.2013.07.059

Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D. J.; Christy, A. G.; Beavis, S. G. 2016. Pharmaceuticals and personal care products (PPCPs) in Australia's largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541, 1625-1637. https://doi.org/10.1016/j.scitotenv.2015.03.145

Rodriguez-Narvaez, O. M.; Peralta-Hernandez, J. M.; Goonetilleke, A.; Bandala, E. R. 2017. Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106

Sato, C.; Kim, I.; Tanaka, H. 2016. Effect of H2O2 on UV photo-oxidation of pharmaceuticals and personal care products in wastewater. Journal of Environmental Engineering, 142, (11), 04016055. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001132

Sharma, B. M.; Be?anová, J.; Scheringer, M.; Sharma, A.; Bharat, G. K.; Whitehead, P. G.; Klánová, J.; Nizzetto, L. 2019. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of the Total Environment, 646, 1459-1467. https://doi.org/10.1016/j.scitotenv.2018.07.235

Soares, A. F. S.; Leão, M. M. D. 2015. Contaminação dos mananciais por micropoluentes e a precária remoção desses contaminantes nos tratamentos convencionais de água para potabilização. De Jure: Revista Jurídica do Ministério Público do Estado de Minas Gerais, 14, (24), 36-85.

Solís, R. R.; Gimeno, O.; Rivas, F. J.; Beltrán, F. J. 2019b. Simulated solar driven photolytic ozonation for the oxidation of aqueous recalcitrant-to-ozone tritosulfuron. Transformation products and toxicity. Journal of Environmental Management, 233, 513-522. https://doi.org/10.1016/j.jenvman.2018.12.068

Solís, R. R.; Medina, S.; Gimeno, O.; Beltrán, F. J. 2019a. Solar photolytic ozonation for the removal of recalcitrant herbicides in river water. Separation and Purification Technology, 212, 280-288. https://doi.org/10.1016/j.seppur.2018.11.035

Sorensen, J. P. R.; Lapworth, D. J.; Nkhuwa, D. C. W.; Stuart, M. E.; Gooddy, D. C.; Bell, R. A.; Chirwa, M.; Kabika, J.; Liemisa, M.; Chibesa, M.; Pedley, S. 2015. Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51-63. https://doi.org/10.1016/j.watres.2014.08.002

Suarez, S.; Lema, J. M.; Omil, F. 2010. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, (10), 3214-3224. https://doi.org/10.1016/j.watres.2010.02.040

Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C. P. 2016. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 208, 371-381. https://doi.org/10.1016/j.envpol.2015.10.003

Suo, F.; Liu, X.; Li, C.; Yuan, M.; Zhang, B.; Wang, J.; Ji, M. 2019. Mesoporous activated carbon from starch for superior rapid pesticides removal. International Journal of Biological Macromolecules, 121, 806-813. https://doi.org/10.1016/j.ijbiomac.2018.10.132

Szabová, P.; Hencelová, K.; Sameliaková, Z.; Marcová, T.; Sta?ová, A. V.; Grabicová, K.; Bodík, I. 2020. Ozonation: efective way for removal of pharmaceuticals from wastewater. Monatshefte für Chemie - Chemical Monthly, 151, 685-691. https://doi.org/10.1007/s00706-020-02600-x

Taheran, M.; Brar, S. K.; Verma, M.; Surampalli, R. Y.; Zhang, T. C.; Valéro, J. R. 2016. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Science of the Total Environment, 547, 60-77. https://doi.org/10.1016/j.scitotenv.2015.12.139

Tazdaït, D.; Salah, R.; Grib, H.; Abdi, N.; Mameri, N. 2018. Kinetic study on biodegradation of glyphosate with unacclimated activated sludge. International Journal of Environmental Health Research, 28, (4), 448-459. https://doi.org/10.1080/09603123.2018.1487043

Tran, N. H.; Reinhard, M.; Gin, K. Y. H. 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182-207. https://doi.org/10.1016/j.watres.2017.12.029

Tröger, R.; Köhler, S. J.; Franke, V.; Bergstedt, O.; Wiberg, K. 2020. A case study of organic micropollutants in a major Swedish water source–Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. Science of the Total Environment, 706, 135680. https://doi.org/10.1016/j.scitotenv.2019.135680

Valhondo, C.; Carrera, J.; Martínez-Landa, L.; Wang, J.; Amalfitano, S.; Levantesi, C.; Diaz-Cruz, M. S. 2020. Reactive Barriers for Renaturalization of Reclaimed Water during Soil Aquifer Treatment. Water, 12, (4), 1012. https://doi.org/10.3390/w12041012

Van Driezum, I. H.; Derx, J., Oudega, T. J.; Zessner, M.; Naus, F. L.; Saracevic, E.; Blaschke, A. P. 2019. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Science of the Total Environment, 649, 212-223. https://doi.org/10.1016/j.scitotenv.2018.08.300

Viegas, R. M. C.; Mesquita, E.; Martins, A.; Rosa, M. J. 2020. Estratégias de reforço físico-químico com carvão ativado em pó para controle de fármacos em ETAR. Águas e Resíduos. 4, (6), 18-27. https://doi.org/10.22181/aer.2020.0602

Von Sperling, M.; Sezerino, P. H. 2018. Dimensionamento de wetlands construídos no Brasil. Wetlands, 2359-0548.

Wang, S.; Wang, J. 2017. Degradation of emerging contaminants by acclimated activated sludge. Environmental Technology, 39, (15), 1985-1993. https://doi.org/10.1080/09593330.2017.1345989

Wilkinson, J.; Hooda, P. S.; Barker, J.; Barton, S.; Swinden, J. 2017. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954-970. https://doi.org/10.1016/j.envpol.2017.08.032

Williams, M.; Kookana, R. S.; Mehta, A.; Yadav, S. K.; Tailor, B. L.; Maheshwari, B. 2019. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Science of the Total Environment, 647, 1256-1265. https://doi.org/10.1016/j.scitotenv.2018.08.084

Yadav, M. K.; Short, M. D.; Gerber, C.; van den Akker, B.; Aryal, R.; Saint, C. P. 2019. Occurrence, removal and environmental risk of markers of five drugs of abuse in urban wastewater systems in South Australia. Environmental Science and Pollution Research, 26, (33), 33816-33826. https://doi.org/10.1007/s11356-018-2464-6

Yang, L.; He, J. T.; Su, S. H.; Cui, Y. F.; Huang, D. L.; Wang, G. C. 2017. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environmental Science and Pollution Research, 24, (18), 15838-15851. https://doi.org/10.1007/s11356-017-8999-0

Yang, X.; Flowers, R. C.; Weinberg, H. S.; Singer, P. C. 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 45, (16), 5218-5228. https://doi.org/10.1016/j.watres.2011.07.026

Zhang, L.; Lyu, T.; Vargas, C. A. R.; Arias, C. A.; Carvalho, P. N.; Brix, H. 2018. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution, 240, 699-708. https://doi.org/10.1016/j.envpol.2018.05.028

Publicado

2023-05-21

Como Citar

Santos, R. M. S. dos, Nascimento, R. F. do, Silva, L. C. da, Carvalho Filho, J. A. A. de, & Paiva, A. L. R. de. (2023). Contaminação dos recursos hídricos por micropoluentes emergentes e os possíveis métodos de tratamento para sua remoção. Journal of Environmental Analysis and Progress, 8(2), 070–085. https://doi.org/10.24221/jeap.8.2.2023.4392.070-085