Installation and calibration of sensors for analysis of soil humidity and temperature in eastern Amazon areas

Autores

  • Renato Silva Junior Instituto Tecnológico Vale Desenvolvimento Sustentável - ITV DS
  • Alexandra Lima Tavares Climatempo (StormGeo)
  • Marcio Sousa da Silva Instituto Tecnológico Vale Desenvolvimento Sustentável
  • Gabriel Caixeta Martins Instituto Tecnológico Vale Desenvolvimento Sustentável
  • Carlos Eduardo Aguiar de Souza Costa Universidade Federal do Pará
  • Adayana Maria Queiroz de Melo Instituto Tecnológico Vale Desenvolvimento Sustentável
  • Wilson da Rocha Nascimento Júnior Instituto Tecnológico Vale Desenvolvimento Sustentável

DOI:

https://doi.org/10.24221/jeap.8.2.2023.4917.086-098

Palavras-chave:

Direct measurement, drill & drop, water balance

Resumo

Soil moisture and temperature are important components to improve watershed management and natural resource planning. In that way, this article aimed to evaluate the installation and calibration of five sensors (Drill & Drop) as well as the consistency of the results obtained for moisture and soil temperature in areas of forest, pasture, forest-pasture transition, and pasture-urban transition in the Itacaiúnas River Hydrographic Area (IRB) in the Eastern Amazon. The results are from April to September 2019, showing different trends between forest and pasture areas. The data consistency analysis efficiently identified measurement errors, especially in the soil’s surface layer (10 cm). The highest percentage of error data occurred in the Onça Puma and IFPA rural stations, with 22.8% and 17.6%. On the other hand, these results may be associated with the environmental characteristics of the region, as well as the soil’s physical characteristics during each season. The soil temperature and humidity parameters were consistent with data from other meteorological variables (precipitation and mean air temperature) measured by sensors installed in the local hydrometeorological stations. Generally, the temperature and soil moisture measurements were obtained properly and are presented as quality data sources. Thus, it is expected that the results will contribute to enriching the availability of soil data in the IRB and encourage the use of direct measurements given the quantity (and quality) of data obtained using this instrumentation.

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. 2014. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Alves, R. A.; Beserra Neta, L. 2018. Alterações na paisagem lacustre em decorrência da ação antrópica no município de Bonfim - Roraima. Acta Geográfica, 12, 1-18.

Brasil. 2003. Conselho Nacional de Recursos Hídricos. Secretaria Recursos Hídricos. Resolução No 32 de 15 de outubro de 2003. Available at: http://www.cnrh.gov.br. Access at: July 2, 2019.

Doraiswamy, P. C.; Pasteris, P. A.; Jones, K. C.; Motha, R. P.; Nejedlik, P. 2000. Techniques for methods of collection, database management and distribution of agrometeorological data. Agricultural and Forest Meteorology, 103, 83-97. https://doi.org/10.1016/s0168-1923(00)00120-9

Estévez, J.; Gavilán, P.; Giráldez, J. V. 2011. Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology, 402, 144-154. https://doi.org/10.1016/j.jhydrol.2011.02.031

Feng, S.; Hu, Q.; Qian, W. 2004. Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology, 24, 853-870. https://doi.org/10.1002/joc.1047

Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. 2019. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma, 338, 67-77. https://doi.org/10.1016/j.geoderma.2018.11.044

Gardner, C. M. K.; Dean, T. J.; Cooper, J. D. 1997. Soil water content measurement with a high-frequency capacitance sensor. Journal of Agricultural Engineering Research, 71, 395-403. https://doi.org/10.1006/jaer.1998.0338

Gomes, F. H. F.; Cunha, F. N.; Lopes Filho, L. C.; Vidal, V. M.; Soares, F. A. L.; Teixeira, M. B. 2017. Calibração de um sensor de umidade do solo de baixo custo. Revista Brasileira de Agricultura Irrigada, 11, 1509-1516. https://doi.org/10.7127/rbai.v11n400605

Grüter, E.; Häberli, C.; Küng, U; Mumenthaler, P.; Mettler, J.; Bassi, M.; Konzelmann, T.; Dösseger, R. 2001. The Next Generation of Quality Control Tools for Meteorological Data at MeteoSwiss DACH-MT.

INMET. 1992. Instituto Nacional de Meteorologia, Normais Climatológicas. Available at: http://www,inmet,gov,br/portal/index,php?r=bdmep/bdmep. Access at: August 15, 2019.

Li, X.; Xu, X.; Liu, W.; He, L.; Xu, C.; Zhang, R.; Chen, L.; Wang, K. 2019. Revealing the scale-specific influence of meteorological controls on soil water content in a karst depression using wavelet coherency. Agriculture, Ecosystems & Environment, 279, 89-99. https://doi.org/10.1016/j.agee.2019.04.016

Lima, H. V.; Silva, A. P.; Romero, R. E.; Jacomine, P. K. T. 2005. Comportamento físico de um argissolo acinzentado coeso no estado do Ceará. Revista Brasileira de Ciência do Solo, 29, 33-40. https://doi.org/10.1590/s0100-06832005000100004

Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. 2019. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sensing of Environment, 233, 111364. https://doi.org/10.1016/j.rse.2019.111364

Meek, D.; Hatfield, J. 1994. Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology, 69, 85-109. https://doi.org/10.1016/0168-1923(94)90083-3

Minet, J.; Lambot, S.; Delaide, G.; Huisman, J. A.; Vereecken, H.; Vanclooster, M. 2010. A generalized frequency domain reflectometry modeling technique for soil electrical properties determination. Vadose Zone Journal, 9, 1063-1072. https://doi.org/10.2136/vzj2010.0004

Moraes, B. C.; Costa, J. M. N.; Costa, A. C. L.; Costa, M. H. 2005. Variação espacial e temporal da precipitação no Estado do Pará. Acta Amazonica, 35, 207-214. https://doi.org/10.1590/s0044-59672005000200010

Moroke, T. S.; Schwartz, R. C.; Brown, K. W.; Juo, A. S. R. 2011. Water use efficiency of dryland cowpea, sorghum and sunflower under reduced tillage. Soil and Tillage Research, 112, 76-84. https://doi.org/10.1016/j.still.2010.11.008

Peña-Arancibia, J. L.; Stewart, J. P.; Kirby, J. M. 2021. Water balance trends in irrigated canal commands and its implications for sustainable water management in Pakistan: evidence from 1981 to 2012. Agricultural Water Management, 245, 106648. https://doi.org/10.1016/j.agwat.2020.106648

Pereira, L. S.; Paredes, P.; Jovanovic, N. 2020. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agricultural Water Management, 241, 106357. https://doi.org/10.1016/j.agwat.2020.106357

Pontes, P. R. M.; Cavalcante, R. B. L.; Sahoo, P. K.; Silva Júnior, R. O.; Silva, M. S.; Dall'Agnol, R.; Siqueira, J. O. 2019. The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. Journal of Environmental Management, 235, 489-499. https://doi.org/10.1016/j.jenvman.2019.01.090

Reek, T.; Doty, S. R.; Owen, T. W. 1992. A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bulletin of the American Meteorological Society, 73, 753-762. https://doi.org/10.1175/1520-0477(1992)073<0753:adattv>2.0.co;2

Sanikhani, H.; Deo, R. C.; Yaseen, Z. M.; Eray, O.; Kisi, O. 2018. Non-tuned data intelligent model for soil temperature estimation: a new approach. Geoderma, 330, 52-64. https://doi.org/10.1016/j.geoderma.2018.05.030

Sentek Technologies. 2016. Drill & Drop Installation Manual. Available at: https://sentektechnologies.com/downloads/. Access at: October 16, 2016.

Shafer, M. A.; Fiebrich, C. A.; Arndt, D. S.; Fredrickson, S. E.; Hughes, T. W. 2000. Quality assurance procedures in the Oklahoma Mesonetwork. Journal of Atmospheric and Oceanic Technology, 17, 474-494. https://doi.org/10.1175/1520-0426(2000)017<0474:qapito>2.0.co;2

Silva Júnior, R. O.; Souza, E. B.; Tavares, A. L.; Mota, J. A.; Ferreira, D. B. S.; Souza-Filho, P. W. M.; Rocha, E. J. P. 2017a. Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon. Anais da Academia Brasileira de Ciências, 89, 1985-2002. https://doi.org/10.1590/0001-3765201720170147

Silva Júnior, R. O.; Queiroz, J. C. B.; Ferreira, D. B. S.; Tavares, A. L.; Souza-Filho, P. W. M.; Guimarães, J. T. F.; Rocha, E. J. P. 2017b. Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil. Revista Brasileira de Geografia Física, 10, 1638-1654. https://doi.org/10.26848/rbgf.v.10.5.p1638-1654

Silva-Júnior, R. O.; Souza-Filho, P. W. M. E.; Salomão, G. N.; Tavares, A. L.; Santos, J. F. D.; Santos, D. C.; Dias, L. C.; Silva, M. S.; Melo, A. M. Q.; Costa, C. E. A. S.; Rocha, E. J. P. 2021. Response of water balance components to changes in soil use and vegetation cover over three decades in the Eastern Amazon. Frontiers in Water, 3, 135. https://doi.org/10.3389/frwa.2021.749507

Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.; Miniat, C. F. 2021. Soil moisture responses to rainfall: implications for runoff generation. Water Resources Research, 57, e2020WR028827. https://doi.org/10.1029/2020wr028827

Souza-Filho, P. W. M.; Souza, E. B.; Silva Júnior, R. O.; Nascimento, W. R.; Versiani de Mendonça, B. R.; Guimarães, J. T. F.; Dall’Agnol, R.; Siqueira, J. O. 2016. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. Journal of Environmental Management, 167, 175-184. https://doi.org/10.1016/j.jenvman.2015.11.039

Souza, E. R.; Montenegro, A. A. A.; Montenegro, S. M. G.; Arimatea de Matos, J. 2011. Temporal stability of soil moisture in irrigated carrot crops in Northeast Brazil. Agricultural Water Management, 99, 26-32. https://doi.org/10.1016/j.agwat.2011.08.002

Srivastava, P. K. 2017. Satellite soil moisture: review of theory and applications in water resources. Water Resources Management, 31, 3161-3176. https://doi.org/10.1007/s11269-017-1722-6

Stanly, R.; Yasala, S.; Oliver, D. H.; Nair, N. C.; Emperumal, K.; Subash, A. 2021. Hydrochemical appraisal of groundwater quality for drinking and irrigation: a case study in parts of southwest coast of Tamil Nadu, India. Applied Water Science, 11, 1-20. https://doi.org/10.1007/s13201-021-01381-w

Su, S. L.; Singh, D. N.; Shojaei Baghini, M. 2014. A critical review of soil moisture measurement. Measurement, 54, 92-105. https://doi.org/10.1016/j.measurement.2014.04.007

Teruel, J. D. G. 2017. Análisis y Modelado de Sensores de Reflectometría en Frecuencia para Medida de Agua en el Suelo. Trabalho de Conclusão de Curso – Escuela Técnica Superior de Ingenieria Industrial, Universidad Politécnica de Cartagena, Cartagena.

Tong, Y.; Wang, Y.; Song, Y.; Sun, H.; Xu, Y. 2020. Spatiotemporal variations in deep soil moisture and its response to land-use shifts in the Wind–Water Erosion Crisscross Region in the Critical Zone of the Loess Plateau (2011-2015), China. CATENA, 193, 104643. https://doi.org/10.1016/j.catena.2020.104643

Vejen, F.; Jacobson, C.; Fredriksson, U.; Moe, M.; Andresen, L.; Hellsten, E.; Rissanen, P.; Palsdottir, T.; Arason, T. 2002. Quality control of Meteorological Observations, Report 8/2002 KLIMA. Norweigan Meteorological Institute, Oslo, Norway.

Vereecken, H.; Huisman, J. A.; Bogena, H.; Vanderborght, J.; Vrugt, J. A.; Hopmans, J. W. 2008. On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resources Research, 44, 1-21. https://doi.org/10.1029/2008wr006829

Whalley, W. R.; Dean, T. J.; Izzard, P. 1992. Evaluation of the capacitance technique as a method for dynamically measuring soil water content. Journal of Agricultural Engineering Research, 52, 147-155. https://doi.org/10.1016/0021-8634(92)80056-x

WMO. 2017. Guide to the Global Global Observing System. WMO-No. 488. World Meteorological Organization, Geneva, Switzerland.

Downloads

Publicado

2023-05-26

Como Citar

Silva Junior, R., Tavares, A. L., Silva, M. S. da, Martins, G. C., Costa, C. E. A. de S., Melo, A. M. Q. de, & Nascimento Júnior, W. da R. (2023). Installation and calibration of sensors for analysis of soil humidity and temperature in eastern Amazon areas. Journal of Environmental Analysis and Progress, 8(2), 086–098. https://doi.org/10.24221/jeap.8.2.2023.4917.086-098