A Importância do hidrogênio na indústria de mineração como fonte de energia renovável

Autores

  • Robson Lage Figueiredo Universidade Federal de Ouro Preto / UFOP
  • José Margarida da Silva
  • Carlos Enrique Arroyo Ortiz

DOI:

https://doi.org/10.24221/jeap.8.4.2023.5544.240-251

Palavras-chave:

Descarbonização, hidrogênio verde, energia, óleo diesel, mineração

Resumo

Na mineração, o sistema de operação depende de equipamentos que consomem grandes quantidades de energia. Nas operações mineiras, os equipamentos a diesel são amplamente empregados devido à sua flexibilidade, capacidade de carga e adaptabilidade a várias condições de terreno. Entretanto, apresentam alto consumo de óleo diesel e alta taxa de emissão de gases de efeito estufa. Este artigo oferece uma visão do efeito do hidrogênio sobre os motores diesel na busca de alternativas de energia renovável que estejam em sintonia com a redução do impacto ambiental decorrente do uso de combustíveis derivados do petróleo. É seguido por uma discussão do consumo de energia na mineração. Apresenta as tecnologias de produção do hidrogênio, as vantagens em utilizá-los em quantidades controladas e os desafios de produção, armazenamento e custos de fornecimento. Destaca-se o hidrogênio verde, livre de carbono, uma alternativa emergente na descarbonização das minas.

Downloads

Não há dados estatísticos.

Referências

Ahluwalia, R. K.; Wang, X.; Star, A. G.; Papadias, D. D. 2022. Performance and cost of fuel cells for off-road heavy-duty vehicles. International Journal of Hydrogen Energy, 47, (20), 10990-11006. https://doi.org/10.1016/j.ijhydene.2022.01.144

Ajanovic, A.; Sayer, M.; Haas, R. 2022. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 47, (57), 24136-24154. https://doi.org/10.1016/j.ijhydene.2022.02.094

Al-Dawody, M. F.; Al-Farhany, K. A.; Allami, S.; Al-Chlaihawi, K. K. I.; Jamshed, W.; El Din, S. M. 2023. Using oxy-hydrogen gas to enhance efficacy and reduce emissions of diesel engine. Ain Shams Engineering Journal, 102217.

Alhabradi, M.; Nundy, S.; Ghosh, A.; Tahir, A. A. 2022. Vertically Aligned CdO-Decked ?-Fe2O3 Nanorod Arrays by a Radio Frequency Sputtering Method for Enhanced Photocatalytic Applications. ACS omega, 7, (32), 28396-28407.

ANM - Agência Nacional de Mineração. 2022. Anuário Mineral Brasileiro. Disponível em: http://www.anm.gov.br. Acesso em: 30 de dezembro de 2022.

Bajany, D. M.; Zhang, L.; Xia, X. 2019. An Optimization Approach for Shovel Allocation to Minimize Fuel Consumption in Open-pit Mines: Case of Heterogeneous Fleet of Shovels. 52, 207-212.

Bakar, R. A.; Widudo; Kadirgama, K. Ramasamy, D.; Yusaf, T.; Kamarulzaman, M. K.; Sivaraos; Aslfattahi, N.; Samylingam, L.; Alwayzy, S. H. 2022. Experimental Analysis on the Performance, Combustion/Emission Characteristics of a DI Diesel Engine Using Hydrogen in Dual Fuel Mode. International Journal of Hydrogen Energy, 43, 5415-5435. https://doi.org/10.1016/j.ijhydene.2022.04.129

Bao, H.; Knights, P.; Kizil, M.; Nehring, M. 2023. Electrification Alternatives for Open Pit Mine Haulage Mining, 3, 1-25. https://doi.org/10.3390/mining3010001

Benbellil, M. A.; Lounici, M. S.; Loubar, K.; Tazerout, M. 2022. Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine. Energy, 243, 122746.

Calvo, G.; Valero, A. 2022. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environmental Development, 41, 100640. https://doi.org/10.1016/j.envdev.2021.100640

Chantre, C.; Eliziário, S. A.; Braga, S. L. 2022. Hydrogen economy development in Brazil: An analysis of stakeholder’s perception, 34, 26-41.

Carvalho Jr, J. A.; Castro, A.; Brasil, G. H.; Souza Jr, P. A.; Mendiburu, A. Z. 2022. CO2 Emission Factors and Carbon Losses for Off-Road Mining Trucks. Energies, 15, (7), 2659. https://doi.org/10.3390/en15072659

Dimitriou, P.; Kumar, M.; Tsujimura, T.; Suzuki, Y. 2018. Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine. International journal of hydrogen energy, 43, (29), 13605-13617. https://doi.org/10.1016/j.ijhydene.2018.05.062

Foorginezhad, S.; Mohseni-Dargah, M.; Falahati, Z.; Abbassi, R.; Razmjou, A.; Asadnia, M. 2021. Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. Journal of Power Sources, 489, 229450. https://doi.org/10.1016/j.jpowsour.2021.229450

Elnajjar, E.; Al-Omari, S. A. B.; Selim, M. Y. E.; Purayil, S. T. P. 2022. CI engine performance and emissions with waste cooking oil biodiesel boosted with hydrogen supplement under different load and engine parameters. Alexandria Engineering Journal, 61, (6), 4793-4805.

Garcia, A.; Monsalve-Serrano, J.; Martinez-Boggio, S.; Gaillard, P.; Poussin, O.; Amer, A. A. 2020. Dual fuel combustion and hybrid electric powertrains as potential solution to achieve 2025 emissions targets in medium duty trucks sector. Energy conversion and management, 224, 113320.

George, J. F.; Müller, V. P.; Winkler, J.; Ragwitz, M. 2022. Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany. Energy Policy, 167, 113072. https://doi.org/10.1016/j.enpol.2022.113072

Gholami, A.; Jazayeri, S. A.; Esmaili, Q. 2022. A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines. Process Safety and Environmental Protection, 163, 621-635. https://doi.org/10.1016/j.psep.2022.05.069

Giuliano, G.; Dessouky, M.; Dexter, S.; Fang, J.; Hu, S.; Miller, M. 2021. Heavy-duty trucks: The challenge of getting to zero. Transportation Research Part D: Transport and Environment, 93, 102742.

Golbasi, O.; kina, E. 2022. Haul truck fuel consumption modeling under random operating conditions: A case study. Transportation Research Part D: Transport and Environment, 102, 103135.

Grandi, M.; Rohde, S.; Liu, D. J.; Gollas, B.; Hacker, V. 2023. Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication–Novel materials and manufacturing processes. Journal of Power Sources, 562, 232734. https://doi.org/10.1016/j.jpowsour.2023.232734

Gunawan, T. A.; Raine, D.; Rory, F. D. 2021. Decarbonising city bus networks in Ireland with renewable hydrogen. International Journal of Hydrogen Energy, 46, (57), 28870-28886.

Hermesmann, M.; Müller, T. E. 2022. Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996

Hoelzen, J.; Silberhorn D.; Bensmann B.; Hanke-Rauschenbach, R. 2022. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure – Review and research gaps. International Journal of Hydrogen Energy, 47, (5), 3108-3130. https://doi.org/10.1016/j.ijhydene.2021.10.239

Jolaoso, L. A.; Bello, I. T.; Ojelade, O. A.; Yousuf, A.; Duan, C.; Kazempoor, P. 2023. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production-a comprehensive review. International Journal of Hydrogen Energy, 46, (62), 31511-31522. https://doi.org/10.1016/j.ijhydene.2023.05.077

Kalantari, H.; Sasmito, A. P.; Ghoreishi-Madiseh, S. A. 2021. An overview of directions for decarbonization of energy systems in cold climate remote mines. Renewable and Sustainable Energy Reviews, 152, 111711.

Kenano?lu, R.; Baltacio?lu, E. 2021. An experimental investigation on hydroxy (HHO) enriched ammonia as alternative fuel in gas turbine. International Journal of Hydrogen Energy, 46, (57), 29638-29648.

Kheirkhah, P.; Steiche, P.; Whyte, T.; Guan, M.; Kirchen, P. 2023. On-Road CO2 and NOx Emissions for a Heavy-Duty Truck with Hydrogen-Diesel Co-Combustion. No. 2023-01-0281, SAE Technical Paper. https://doi.org/10.4271/2023-01-0281

Kota, K. B.; Shenbagaraj, S.; Sharma, P. K.; Sharma, A. K.; Ghodke, P. K.; Chen, W. H. 2022. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel, 324, 124663. https://doi.org/10.1016/j.fuel.2022.124663

Krishnasamy, A.; Gupta, S. K.; Reitz, R. D. 2021. Prospective fuels for diesel low temperature combustion engine applications: A critical review. International Journal of Engine Research, 22, (7), 2071-2106.

Kumar, A.; Kumar, C. B.; Lata, D. B. 2023. Investigation on the performance and emissions of tri-ethylene glycol mono methyl ether with hydrogen as a secondary fuel in dual fuel diesel engine. International Journal of Hydrogen Energy, 48, (26), 9895-9910.

Kumar, C. B.; Lata, D. B.; Mahto, D. 2021. Effect of addition of di-tert butyl peroxide (DTBP) on performance and exhaust emissions of dual fuel diesel engine with hydrogen as a secondary fuel. International Journal of Hydrogen Energy, 46, (14), 9595-9612. https://doi.org/10.1016/j.ijhydene.2020.12.129

Soltani, S. M.; Lahiri, A.; Bahzad, H.; Yan, Y. 2021. Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Science & Technology, 1, 100003. https://doi.org/10.1016/j.ccst.2021.100003

Mirzaei-Nasirabad, H.; Mohtasham, M.; Askari-Nasab, H.; Alizadeh, B. 2023. An optimization model for the real-time truck dispatching problem in open-pit mining operations. Optimization and Engineering, 1-25.

Nejadian, M. M.; Ahmadi, P.; Houshfar, E. 2023. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer. Fuel, 336, 126835. https://doi.org/10.1016/j.fuel.2022.126835

Noussan, M.; Raimondi, P.; Scita, R.; Hafner, M. 2021. The role of green and blue hydrogen in the energy transition-a technological and geopolitical perspective. Sustainability, 13, (1), 1-26.

Pirkl, R.; D’Onofrio, M.; Kapusta, L.; Herrmann, D. 2022. H2 Direct Injection System for Heavy Duty ICE in transient On- & Off-Road Operation. Commercial Vehicle Technology 2022. ICVTS 2022. Proceedings. Springer Vieweg. https://doi.org/10.1007/978-3-658-40783-4_18

Pirkl, R.; Herrmann, D.; Kapusta, L. 2023. H2 Injection System for Heavy-duty Applications. MTZ worldwide, 84, (2), 28-33. https://doi.org/10.1007/s38313-022-1432-1

Purhamadani, E.; Bagherpour, R.; Tudeshki, H. 2021. Energy consumption in open-pit mining operations relying on reduced energy consumption for haulage using in-pit crusher systems. Journal of Cleaner Production, 291, 125228. https://doi.org/10.1016/j.jclepro.2020.125228

Pruvost, F.; Cloete, S.; Dhoke, C.; Zaabout, A. 2022. Techno-Economic assessment of natural gas pyrolysis in molten salts. Energy Conversion and Management, 253, 115187. https://doi.org/10.1016/j.enconman.2021.115187

Reitz, R. D.; Payri, R.; Fansler, T.; Kokjohn, S.; Zhao, H. 2020. The future of the internal combustion engine. International Journal of Engine Research, 21, (1), 3-10.

Runge, I. C. 1998. Mining economics and strategy. SME - Society for Mining Metallurgy & Exploration. 316p.

Sabeghi, M.; Moghiman, M.; Gandomzadeh, D. 2023. Experimental study of the effect of HHO gas injection on pollutants produced by a diesel engine at idle speed. International Journal of Hydrogen Energy, 48, (24), 9117-9126.

Sharma, P.; Dhar, A. 2018. Effect of hydrogen supplementation on engine performance and emissions. International Journal of Hydrogen Energy, 43, (15), 7570-7580. https://doi.org/ 10.1016/j.ijhydene.2018.02.181

Singh, V.; Buelens, L. C.; Poelman, H.; Saeys, M.; Marin, G. B.; Galvita, V. V. 2022. Intensifying blue hydrogen production by in situ CO2 utilisation. Journal of CO2 Utilization, 61, 102014. https://10.1016/j.jcou.2022.102014

Soofastaei, A.; Aminossadati, S. M.; Kizil, M. S.; Knights, P. 2016. A comprehensive investigation of loading variance influence on fuel consumption and gas emissions in mine haulage operation. International Journal of Mining Science and Technology, 26, (6), 995-1001. https://doi.org/10.1016/j.ijmst.2016.09.006.

Subramanian, B.; Thangavel, V. 2020. Experimental investigations on performance, emission, and combustion characteristics of Diesel-Hydrogen and Diesel-HHO gas in a Dual fuel CI engine. International Journal of Hydrogen Energy, 45, (46), 25479-25492.

Torres, L. C. C. 2022. Case study: simulation and artificial intelligence application for the optimization of the hauling and loading process in an open-pit mining system. IFAC-PapersOnLine, 55, (39), 265-269. https://doi.org/10.1016/j.ifacol.2022.12.032

Velandy, S. M. 2011. The green arms race: Reorienting the discussions on climate change. Energy Policy, and National Security. Harv. Nat'l Sec. J., 3, 309.

Vilaça, A. S. I.; Simão, L.; Montedo, O.; Novaes A. P.; Raupp-Pereira, F. 2022. Waste valorization of iron ore tailings in Brazil: Assessment metrics from a circular economy perspective. Resources Policy, 75, 102477.

Yellishetty, M.; Weng, Z. 2021. Iron ore in Australia and the world: Resources, production, sustainability, and prospects. Chapter 22. In: Lu, L. In Woodhead Publishing Series in Metals and Surface Engineering, Iron Ore (Second Edition): Mineralogy, Processing and Environmental Sustainability, Woodhead Publishing, 2022, pp. 711-750.

Publicado

2023-10-19

Como Citar

Figueiredo, R. L., Silva, J. M. da ., & Ortiz, C. E. A. . (2023). A Importância do hidrogênio na indústria de mineração como fonte de energia renovável. Journal of Environmental Analysis and Progress, 8(4), 240–251. https://doi.org/10.24221/jeap.8.4.2023.5544.240-251