Uso de resíduos de conchas de moluscos no tratamento de águas residuais: uma revisão sobre processos e potencialidades

Autores

  • Vinícios Freitas Silva
  • Janssen Júlio Rodrigues
  • Bruno e Silva Ursulino IFCE/Docente

DOI:

https://doi.org/10.24221/jeap.8.3.2023.5809.156-171

Palavras-chave:

Concha de moluscos bivalves, substrato natural, adsorção, fosfato

Resumo

A pesca de mariscos é uma atividade de grande relevância para comunidades ribeirinhas por todo o mundo, contribuindo para a geração de renda familiar, produção de alimento saudável e para o desenvolvimento econômico local. Contudo, muitos impactos são resultantes dessa atividade, devido a sobra das conchas depois do beneficiamento, onde são geradas grandes quantidades de resíduos sólidos que, na maioria das vezes, são descartados incorretamente. Devido à sua composição, as conchas podem ser aplicadas em diversas áreas e, nos últimos anos, a comunidade científica tem avaliado o seu uso na biorremediação de efluentes. Nesse aspecto, o estudo objetivou realizar uma revisão sobre a utilização de resíduos de conchas de moluscos como substrato para o tratamento de águas residuais, fornecendo uma visão geral sobre a composição dos materiais, dos processos aplicados e de toda a potencialidade de reutilização ou descarte adequado desses resíduos. A revisão foi realizada buscando artigos e demais estudos provenientes das bases de dados Scopus, Web of Science e Science Direct. Os resultados obtidos apresentam uma diversidade de processos de tratamentos com diferentes valores de eficiências de remoção de compostos em efluentes brutos, sintéticos e tratados. Constatações a respeito da eficiência de adsorção de compostos fosfatados se mostraram fortemente promissoras, uma vez que, a grande maioria dos autores, mesmo utilizando-se de condições diferentes, obtiveram altas taxas de remoção. Além dos aspectos voltados aos processos físicos e químicos aplicados, os autores também enfatizaram a viabilidade econômica e à mitigação dos impactos no descarte incorreto desses materiais.

Downloads

Não há dados estatísticos.

Referências

Abdullah, N. H.; Syahrul, M.; Yaacob, S.; Athirah, N.; Rani, I.; Muhammad, T.; Haziq, F.; Azman, T.; Nur, M.; Sumawan, I.; Hamid, N. B.; Atikah, N.; Salim, A.; Kaamin, M.; Azraie, M.; Kadir, A.; Ahmad, N.; Lazim, Z. M.; Nuid, M.; Talaiekhozani, A. 2021. Phosphate Adsorption from Synthetic Aqueous Solutions by Waste Mussel Shell: Kinetics and Isotherms Studies. International Journal of Nanoelectronics and Materials, 14, 1-10.

Abdullah, N. H.; Xian, O. J.; Yi, C. Z.; Yuan, N. S.; Yaacob, M. S. S.; Salim, N. A. A.; Ahmad, N.; Lazim, Z. M.; Nuid, M.; Abdullah, F. 2023. Removal of Phosphate from Synthetic Wastewater by Using Marsh Clam (Polymesoda expansa) Shell as an Adsorbent. Biointerface Research in Applied Chemistry, 13, 1-12. https://doi.org/10.33263/BRIAC131.056

Abeynaike, A.; Wang, L.; Jones, M. I.; Patterson, D. A. 2011. Pyrolysed powdered mussel shells for eutrophication control: Effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia-Pacific Journal of Chemical Engineering, 6, 231-243. https://doi.org/10.1002/apj.426

Barros, M. C.; Magán, A.; Valiño, S.; Bello, P. M.; Casares, J. J.; Blanco, J. M. 2009. Identification of best available techniques in the seafood industry: a case study. Journal of Cleaner Production, 17, 391-399. https://doi.org/10.1016/j.jclepro.2008.08.012

Chen, J.; Cai, Y.; Clark, M.; Yu, Y. 2013. Equilibrium and Kinetic Studies of Phosphate Removal from Solution onto a Hydrothermally Modified Oyster Shell Material. PLoS ONE, 8, 1-10. https://doi.org/10.1371/journal.pone.0060243

Cheng, G.; Li, Q.; Su, Z.; Sheng, S.; Fu, J. 2018. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands. Journal of Cleaner Production, 175, 572-581. https://doi.org/10.1016/j.jclepro.2017.12.102

Cheng, M.; Liu, M.; Chang, L.; Liu, Q.; Wang, C.; Hu, L.; Zhang, Z.; Ding, W.; Chen, L.; Guo, S.; Qi, Z.; Pan, P.; Chen, J. 2023. Overview of structure, function and integrated utilization of marine shell. Science of the Total Environment, 870, 1-21. https://doi.org/10.1016/j.scitotenv.2023.161950.

Cui, Y., Liu, C., Wang, L. 2010. Feasibility of Acidogenesis Reactor with Shell Carrier for Domestic Wastewater Treatment. 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, pp. 1-3, IEEE. https://doi.org/10.1109/ICBBE.2010.5517515

Cui, Y.; Tong, Q.; Zhao, J. 2010. Performance of Substrates Removal in Biological Aerated Filter with Shell Carriers. Anais Proceedings of the 3rd International Conference on Environmental Technology and Knowledge Transfer, Dalian, China, pp. 499-502.

Fagundes, S. T. F.; Silva, L. B. 2022. Potencial uso dos resíduos de conchas de moluscos: uma revisão. Research, Society and Development, 11, 1-11. http://dx.doi.org/10.33448/rsd-v11i3.26614

Jones, M. I.; Wang, L. Y.; Abeynaike, A.; Patterson, D. A. 2011. Utilisation of waste material for environmental applications: Calcination of mussel shells for waste water treatment. Advances in Applied Ceramics, 110, 280-286. https://doi.org/10.1179/1743676111Y.0000000016

Kwon, H. B.; Lee, C. W.; Jun, B. S.; Yun, J.; Weon, S. Y.; Koopman, B. 2004. Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling, 41, 75-82. https://doi.org/10.1016/j.resconrec.2003.08.005

Liao, Y.; Wang, X.; Kong, D.; Da, B.; Chen, D. 2023. Experiment research on effect of oyster shell particle size on mortar transmission properties. Construction and Building Materials, 375. https://doi.org/10.1016/j.conbuildmat.2023.131012.

Li, H. Y.; Tan, Y. Q.; Zhang, L.; Zhang, Y. X.; Song, Y. H.; Ye, Y.; Xia, M. S. 2012. Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials, 217-218, 256-262. https://doi.org/10.1016/j.jhazmat.2012.03.028

Li, X., Li, Q., Cheng, N., Liu, Y., Cui, Y. 2010. Substrates removal in anaerobic reactor with shell carriers. Anais Proceedings of the 3rd International Conference on Environmental Technology and Knowledge Transfer, Dalian, China, pp. 503-505.

Liu, Y. X.; Yang, T. O.; Yuan, D. X.; Wu, X. Y. 2010. Study of municipal wastewater treatment with oyster shell as biological aerated filter medium. Desalination, 254, 149-153. https://doi.org/10.1016/j.desal.2009.12.003

Martins, M. C.; Santos, E. B. H.; Marques, C. R. 2017. First study on oyster-shell-based phosphorous removal in saltwater - A proxy to effluent bioremediation of marine aquaculture. Science of The Total Environment, 574, 605-615. https://doi.org/10.1016/j.scitotenv.2016.09.103.

McCorquodale-Bauer, K.; Cicek, N. 2020. Zebra mussel shells as an alternative mineral resource for lime production as a phosphorus precipitant. Environmental Technology, 43, 1446-1457. https://doi.org/10.1080/09593330.2020.1836029.

Nadeem, Y. 2018. Potential for Treatment of Household Wastewater by Using Waste Seashells as a Biofilter Media. Tese de Mestrado, Universidade Norueguesa de Ciências Ambientais e Biológicas. 60p.

Nguyen, T. A. H.; Ngo, H. H.; Guo, W. S.; Nguyen, T. T.; Vu, N. D.; Soda, S.; Nguyen, T. H. H.; Nguyen, M. K.; Tran, T. V. H.; Dang, T. T.; Nguyen, V. H.; Cao, T. H. 2020. White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater. Science of the Total Environment, 741, 1-14. https://doi.org/10.1016/j.scitotenv.2020.140483

Pap, S.; Gaffney, P. P. J.; Bremner, B.; Turk Sekulic, M.; Maletic, S.; Gibb, S. W.; Taggart, M. A. 2022. Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Science of the Total Environment, 814, 1-13. https://doi.org/10.1016/j.scitotenv.2021.152794

Pap, S.; Sekulic, M. T.; Bremner, B. M.; Taggart, A. 2021. From molecular to large-scale phosphorous recovery from wastewater using cost-effective adsorbents: an integrated approach. In: Mohammad, A. W.; Ang, W. L. [eds.]. Integrated and Hybrid Process Technology for Water and Wastewater Treatment, pp. 61-85. https://doi.org/10.1016/B978-0-12-823031-2.00025-2.

Paradelo, R.; Conde-Cid, M.; Cutillas-Barreiro, L.; Arias-Estévez, M.; Nóvoa-Muñoz, J. C.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M. J.; Núñez-Delgado, A. 2016. Phosphorus removal from wastewater using mussel shell: Investigation on retention mechanisms. Ecological Engineering, 97, 558-566. https://doi.org/10.1016/j.ecoleng.2016.10.066

Park, W. H. 2009. Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecological Engineering, 35, 1275-1282. https://doi.org/10.1016/j.ecoleng.2009.05.015

Park, W. H.; Polprasert, C. 2008. Roles of oyster shells in an integrated constructed wetland system designed for P removal. Ecological Engineering, 34, 50-56. https://doi.org/10.1016/j.ecoleng.2008.05.014

Salim, N. A. A; Zaini, M. A. A.; Fulazzaky, M. A.; Puteh, M. H.; Abdullah, N. H.; Nuid, M.; Lazim, Z. M.; Ahmad, N. 2022a. A Two-Stage Batch System for Phosphate Removal from Wastewater by Iron-Coated Waste Mussel Shell to Assess the Optimum Adsorbent Dosage. Journal of Water Chemistry and Technology, 44, 10-20. https://doi.org/10.3103/S1063455X22010088

Salim, N. A. A.; Fulazzaky, M. A.; Puteh, M. H.; Khamidun, M. H.; Yusoff, A. R. M.; Abdullah, N. H.; Nuid, M. 2021a. Adsorption of phosphate from aqueous solution onto iron-coated waste mussel shell: Physicochemical characteristics, kinetic, and isotherm studies. Biointerface Research in Applied Chemistry, 11, 12831-12842. https://doi.org/10.33263/BRIAC115.1283112842

Salim, N. A. A.; Fulazzaky, M. A.; Puteh, M. H.; Khamidun, M. H.; Yusoff, A. R. M.; Abdullah, N. H.; Fulazzaky, M.; Zaini, M. A. A. 2022a. Mass Transfer Kinetics and Mechanisms of Phosphate Adsorbed on Waste Mussel Shell. Water, Air, and Soil Pollution, 233. https://doi.org/10.1007/s11270-022-05693-8

Salim, N. A. A.; Fulazzaky, M. A.; Zaini, M. A. A.; Puteh, M. H.; Khamidun, M. H.; Yusoff, A. R. M.; Abdullah, N. H.; Ahmad, N.; Lazim, Z. M.; Nuid, M. 2021b. Phosphate removal from wastewater in batch system using waste mussel shell. Biointerface Research in Applied Chemistry, 11, 11473-11486. https://doi.org/10.33263/BRIAC114.1147311486

Santos, T. S.; Lima, A. J.; Michelan, D. C. G. S. 2021. Perspectivas sobre o uso de materiais alternativos no tratamento de água: revisão sistemática desenvolvida em filtros lentos. Revista Brasileira de Meio Ambiente, 9, 121-139.

Šarko, J.; Mažeikien?, A. 2020. Investigation of Sorbents for Phosphorus Removal. Proceedings of the International Conference on Environmental Engineering-ICEE, Riga, Letônia. https://doi.org/10.3846/enviro.2020.620

Sun, H. J.; Yang, S. H.; Cui, Y. B. 2013. Shell powder for strengthening phosphate removal efficiency in wastewater treatment. Advanced Materials Research, 781-784, 2138-2141. https://doi.org/10.4028/www.scientific.net/AMR.781-784.2138

Vieira, B.; Coelho, L. H. G.; Jesus, T. A. 2019. Phosphate sorption in shellfish shell (venerupis pulastra) substrates: development of green and low-cost technology for tertiary treatment of effluents. Journal of Environmental Engineering, 145. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001489

Wang, Z.; Dong, J.; Liu, L.; Zhu, G.; Liu, C. 2013a. Study of oyster shell as a potential substrate for constructed wetlands. Water Science and Technology, 67, 2265-2272. https://doi.org/10.2166/wst.2013.105

Wang, Z.; Dong, J.; Liu, L.; Zhu, G.; Liu, C. 2013b. Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater. Ecological Engineering, 54, 57-65. https://doi.org/10.1016/j.ecoleng.2013.01.017

Yao, Z.; Xia, M.; Li, H.; Chen, T.; Ye, Y.; Zheng, H. 2014. Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Critical Reviews in Environmental Science and Technology, 44, 2502-2530. https://doi.org/10.1080/10643389.2013.829763

Yu, Y.; Wu, R.; Clark, M. 2010. Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 350, 538-543. https://doi.org/10.1016/j.jcis.2010.06.033

Zapater-Pereyra, M.; Malloci, E.; van Bruggen, J. J. A.; Lens, P. N. L. 2014. Use of marine and engineered materials for the removal of phosphorus from secondary effluent. Ecological Engineering, 73, 635-642. https://doi.org/10.1016/j.ecoleng.2014.09.112

Publicado

2023-07-10

Como Citar

Silva, V. F. ., Rodrigues, J. J., & Ursulino, B. e S. (2023). Uso de resíduos de conchas de moluscos no tratamento de águas residuais: uma revisão sobre processos e potencialidades. Journal of Environmental Analysis and Progress, 8(3), 156–171. https://doi.org/10.24221/jeap.8.3.2023.5809.156-171