Gas exchange and phenotypic plasticity in three tree species in preserved and anthropized areas in a Tropical Dry Forest

Autores

  • Laila Açucena Mendes Neves Cavalcanti Universidade de Pernambuco
  • Nathália Thais Cavalcante da Silva
  • Maria Aline Soares da Silva Universidade de Pernambuco
  • Alexandre Gomes Teixeira Vieira Universidade Federal de Pernambuco
  • Hiram Marinho Falcão Universidade de Pernambuco

DOI:

https://doi.org/10.24221/jeap.8.4.2023.5812.263-271

Palavras-chave:

Anthropization, functional traits, Caatinga, plant ecophysiology, photosynthesis, water use

Resumo

Caatinga, the Brazilian tropical dry forest and source of endemic species, suffers anthropic disturbances that are responsible for affecting plants and their functional traits. This study aimed to evaluate the plasticity of woody species’ leaf traits due to abiotic conditions of preserved and anthropized areas in Caatinga. The study took place in Vale do Riacho São José, in the municipality of Caetés, Pernambuco, Brazil. The selected species were Mimosa tenuiflora, M. arenosa, and Senna sp., all belonging to the Fabaceae family. We measured gas exchange, water content, specific leaf area, and phenotypic plasticity index of all selected species in both areas. Considering all species, stomatal conductance was higher in preserved areas, but photosynthesis was higher only for Senna sp. which also showed lower water use efficiency among all species. Furthermore, Senna sp. presented the highest relative water content in preserved areas and showed no differences in specific leaf areas between preserved and anthropized areas. The plasticity index showed that Senna sp. was the most plastic species, mainly adjusting water content and gas exchange parameters according to the area. The less plastic species was M. arenosa. A principal component analysis showed a group formation due to anthropization, for all species. However, Senna sp. showed the largest distance among species. All analyzed species respond to environmental conditions of preserved and anthropized areas, but this pattern cannot be related to the characteristics of the botanical family due to species-specific leaf traits’ variations.

Downloads

Não há dados estatísticos.

Referências

Andrade, J. R.; Silva, K. A.; Santos, J. M. F.; Santos, D. M.; Guerra, T. P.; Araújo, E. L. 2015. Influence of microhabitats on the performance of herbaceous species in areas of mature and secondary forest in the semiarid region of Brazil. Revista de Biologia Tropical, 63, (2), 357-368.

Aquino, D. N.; Rocha Neto, O. C.; Moreira, M. A.; Teixeira, A. S.; Andrade, E. M. 2018. Utilização de sensoriamento remoto para identificação de áreas em risco de degradação na região semiárida. Revista Ciência Agronômica, 49, 420-429. https://doi.org/10.5935/1806-690.20180047

Aragão, L. E. O. C.; Poulter, B.; Barlow, J. B.; Anderson, L. O.; Malhi, Y.; Saatchi, S.; Phillips, O. L.; Gloor, E. 2014. Environmental change and carbon balance of Amazonian forests. Biological Reviews, 89, 913-931. https://doi.org/10.1111/brv.12088

Barrs, H. D.; Weatherley, P. E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Science, 273, 413-428. https://doi.org/10.1071/BI9620413

Basso, B.; Ritchie, J. T. 2018. Evapotranspiration in high-yielding maize and under increased vapor pressure deficit in the US Midwest. Agricultural & Environmental Letters, 3, 170039. https://doi.org/10.2134/ael2017.11.0039

Bernardo, W. dos S.; Lima, C. E. S. de; Costa, S. O. de S.; Gomes, D. D. M. 2014. The mapping and identification of the geodiversity geossitios to create trails geoturistic in Valley Stream St Joseph, in Caetés-PE. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 18, (3), 1116-1123. https://doi.org/10.5902/2236117013858

Boyer, K. E.; Kertesz, J. S.; Bruno, J. F. 2009. Biodiversity effects on productivity and stability of marine macroalgal communities: the role of environmental context. Oikos, 118, 1062-1072. https://doi.org/10.1111/j.1600-0706.2009.17252.x

Bradshaw, A.D. 1965. Evolutionary Significance of Phenotypic Plasticity. Advances in Genetics, 13, 115-153. https://doi.org/10.1016/S0065-2660(08)60048-6

Caferri, R.; Bassi, 2022. R. Plants and water in a changing world: a physiological and ecological perspective. Rendiconti Lincei. Scienze Fisiche e Naturali, 33, 479-487. https://doi.org/10.1007/s12210-022-01084-7

Campbell, G. S.; Norman, J. M. 1998. An Introduction to Environmental Biophysics. New York. Springer-Verlag. 286p.

Chaves, A. M. S.; Silva Filho, C. R.; Guedes, J. C. F.; Costa, D. F. S.; Melo & Souza, R. 2022. Spatial Analysis of the Geoecological Adequability Index in Semi-Arid Watersheds, Northeast of Brazil. Environmental Sciences and Ecology: Current Research, 03, 1070.

Cheng, J.; Chu, P.; Chen, D.; Bai, Y.; Niu, S. 2016. Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Functional Ecology, 30, 985-997 https://doi.org/10.1111/1365-2435.12569

Duan, X.; Jia, Z.; Li, J.; Wu, S. 2022. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Global Ecology and Conservation, 38, e02177. https://doi.org/10.1016/j.gecco.2022.e02177.

Dwyer, J. M.; Hobbs, R. J.; Mayfield, M. M. 2014. Specific Leaf Area Responses to Environmental Gradients through Space and Time. Ecology, 95, 399-410. https://www.jstor.org/stable/43494353 Falcão, H. M.; Medeiros, C. D.; Silva, B. L. R.; Sampaio, E. V. S. B.; Almeida-Cortez, J. S.; Santos, M. G. 2015. Phenotypic plasticity and ecophysiological strategies in a tropical dry forest chronosequence: a study case with Poincianella pyramidalis. Forest Ecology and Management, 340, 62-69. https://doi.org/10.1016/j.foreco.2014.12.029

Fagundes, M. V.; Mazzochini, G. G; Ganade, G. 2023. The role of plant diversity and facilitation during tropical dry forest restoration. Journal of Ecology, 111, 1231-1241.

https://doi.org/10.1111/1365-2745.14091

Fender, A. C.; Mantilla-Contreras, J.; Leuschner, C. 2011. Multiple environmental control of leaf area and its significance for productivity in beech saplings. Trees, 25, 847-857. https://doi.org/10.1007/s00468-011-0560-z

Grossiord, C.; Buckley, T. N.; Cernusak, L. A.; Novick, K. A.; Poulter, B.; Siegwolf, R. T. W.; Sperry, J. S.; McDowell, N. G. 2020. Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550-1566. https://doi.org/10.1111/nph.16485

Hatfield, J. L; Dold, C. 2019. Water-use efficiency: advances and challenges in a changing climate. Frontier in Plant Science, 10, 103. https://doi.org/10.3389/fpls.2019.00103

Isaza, C.; Bernal, R.; Howard, P. 2013. Use, production and conservation of palm fiber in South America: A review. Journal of Human Ecology, 42, 69-93. https://doi.org/10.1080/09709274.2013.11906582

Jin, X.; Shi, C.; Yu, C. Y.; Yamada, T.; Sacks, E. J. 2017. Determination of leaf water content by visible and near infrared spectrometry and multivariate calibration in Miscanthus. Frontiers of Plant Science, 08, 1e8. https://doi.org/10.3389/fpls.2017.00721

Koehn, A. C.; McDonald, G. I.; Turner, D. L.; Adams, D. L. 2010. Dynamic Phenotypic Plasticity in Photosynthesis and Biomass Patterns in Douglas-Fir Seedlings. Fort Collins: Department of Agriculture. Forest Service. 14p. https://doi.org/10.2737/RMRS-RP-79

Lande, R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22, 1435-1446. https://doi.org/10.1111/j.1420-9101.2009.01754.x

Lebrija-Trejos, E.; Pérez-García, E. A.; Meave, J. A.; Bongers, F., Poorter, A. L. 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386-398. https://doi.org/10.1890/08-1449.1

Li, X.; Li, Y.; Zhang, Z.; Li, X. 2015. Influences of environmental factors on leaf morphology of Chinese jujubes. PLoS One, 28, e0127825. https://doi.org/10.1371/journal.pone.012782 5. PMID: 26020971; PMCID: PMC4447434.

Matesanz, S.; Gianoli, E. Valladares, F. 2010. Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 1206, 35-55. https://doi.org/10.1111/j.1749-6632.2010.05704.x

Miles, L.; Newton, A. C.; Defries, R. S.; Ravilious, C.; May, I.; Blyth, S.; Kapos, V.; Gordon, J. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491-505. https://doi.org/10.1111/j.1365-2699.2005.01424.x

Nicotra, A. B.; Atkin, O. K.; Bonser, S. P.; Davidson, A. M.; Finnegan, E. J.; Mathesius, U.; Poot, P.; Purugganan, M. D.; Richards, C. L.; Valladares, F.; van Kleunen, M. 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692. https://doi.org/10.1016/j.tplants.2010.09.008

Oguchi, R.; Hikosaka, K.; Hirose, T. 2003. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell & Environment, 26, 505-512. https://doi.org/10.1046/j.1365-3040.2003.00981.x

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Pérez-Harguindeguy, N.; Dias, S.; Garnier, E.; Lavorel. S,; Poorter, H.; Jaureguiberry, P.; Bret-Hart, M. S.; Cornwell, W. K.; Craine, J. M.; Gurvich, D. E.; Urcelay, C.; Veneklaas, E. J.; Reich, P. B.; Poorter, L.; Wright, I. J.; Ray, P.; Enrico, L.; Pausas, J. G.; de Vos, A. C.; Buchmann, N.; Funes, G.; Quértier, F.; Hodgson, J. G.; Thompson, K.; Morgan, H. D.; ter Steege, H.; van der Heijden, M. G. A.; Sack, L.; Blonder, B.; Poschlod, P.; Vaieretti, M. V.; Conti, G.; Staver, A. C.; Aquino, S.; Cornelissen, J. H. C. 2016. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, (8), 715-716. https://doi.org/10.1071/BT12225

Prado Júnior, J.; Schiavini, I.; Vale, V.; Lopes, S.; Arantes, C.; Oliveira, A. P. 2015. Functional leaf traits of understory species: Strategies to different disturbance severities. Brazilian Journal of Biology, 75, 339-346. https://doi.org/10.1590/1519-6984.12413

Rito, K. F.; Arroyo-Rodríguez, V.; Queiroz, R. T.; Leal, I. R.; Tabarelli, M. 2016. Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology, 105, 828-838. https://doi.org/10.1111/1365-2745.12712

Silva, D. A. O.; Lopes. P. M. O.; Moura, G. B. A.; Silva, E. F. F.; Silva, J. L. B.; Bezerra, A. L. 2019. Evolução Espaço-Temporal do Risco de Degradação da Cobertura Vegetal de Petrolina PE. Revista Brasileira de Meteorologia, 34, 1-11. https://dx.doi.org/10.1590/0102-778633401

Sultan, S. E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. https://doi.org/10.1016/S1360-1385(00)01797-0

Thornthwaite, C. W.; Mather, J. R. 1955. The water balance. Centerton, NJ: Drexel Institute of Technology - Laboratory of Climatology. 104p.

Valladares, F.; Gianoli, E.; Gómez, J. M. 2007. Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x

Velasco-Muñoz, J. F.; Aznar-Sánchez, J. A.; Belmonte-Ureña, L. J.; López-Serrano, M. J. 2018. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water, 10, 377. https://doi.org/10.3390/w10040377

Violle, C.; Navas, M-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. 2007. Let the concept of trait be functional! Oikos, 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

Van Kleunen, M.; Fischer, M. 2007. Progress in the detection of costs of phenotypic plasticity in plants. New Phytologist, 176, 727-730. https://doi.org/10.1111/j.1469-8137.2007.02296.x

Downloads

Publicado

2023-11-09

Como Citar

Cavalcanti, L. A. M. N., Silva, N. T. C. da, Silva, M. A. S. da, Vieira, A. G. T., & Falcão, H. M. (2023). Gas exchange and phenotypic plasticity in three tree species in preserved and anthropized areas in a Tropical Dry Forest. Journal of Environmental Analysis and Progress, 8(4), 263–271. https://doi.org/10.24221/jeap.8.4.2023.5812.263-271