Analysis and operational improvement of a dissolved air flotation device treating wastewater from the production of electrical equipment

Autores

DOI:

https://doi.org/10.24221/jeap.10.1.2025.6402.052-059

Palavras-chave:

Comparative costs, oily effluents, turbidity

Resumo

The industrial sector faces increasing pressure to adopt sustainable practices, driven by the significant environmental impacts of wastewater discharge into aquatic ecosystems. This study evaluated the efficacy of three chemical coagulants in reducing turbidity and solids concentration in wastewater generated by an electrical equipment manufacturing facility. The research also explored the synergistic effects of coagulant application on enhancing the performance of the dissolved air flotation (DAF) system integrated into the industry's wastewater treatment plant (WWTP). The experimental methodology involved preliminary Jar test assays to determine optimal coagulant dosages for maximizing turbidity reduction without adjusting the wastewater's initial pH. Subsequently, on-site trials were conducted, introducing the predetermined coagulant dosages before DAF treatment. In the preliminary stage, the coagulants tested were aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), and aluminum polychloride (PAC). The dosages that provided the highest turbidity removal efficiencies were 4, 35, and 40 mg.L-1 for the PAC, FeCl3, and Al2(SO4)3, respectively. Only the PAC and Al2(SO4)3 were tested in the on-site tests. 40 mg.L-1 of Al2(SO4)3 showed greater efficiency in removing total solids (TS) and total suspended solids (TSS). Turbidity removal was more effective using PAC at 4 mg.L-1 dosage. A comparative cost analysis revealed that PAC is a more economical coagulant than Al?(SO?)? for operating the DAF system, with a 40.65% lower cost, making it the optimal choice for the industrial WWTP.

Downloads

Não há dados estatísticos.

Referências

Alvim, C. S.; Marques, R. F. P. V.; Inácio, A. R.; Oliveira, A. S.; Santos, E. M. N.; Rodrigues, L. S.; Rezende, R. M. 2022. Comparação de coagulantes inorgânicos e floculante por meio de Jar-Test para o tratamento físico e químico de efluente de laticínio. Revista Ibero-Americana de Ciências Ambientais, 13, (3), 105-119. https://sustenere.inf.br/index.php/rica/article/view/7107/3871

APHA. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environmental Federation. First Edition.

Ariano, G. C. 2009. Coagulação, floculação e flotação do efluente de reatores anaeróbios, tratando esgoto sanitário, com aplicação de diferentes dosagens de coagulante em função da variação da turbidez do esgoto afluente ao longo do dia. Dissertação de Mestrado, Universidade de São Paulo. São Carlos, São Paulo. 193p.

Asmel, N. K.; Al-Nima, R. R.; Mohammed, F. I.; Al Saadi, A. M.; Ganiyu, A. A. 2021. Forecasting Effluent Turbidity and pH In Jar Test Using Radial Basis Neural Network. Towards a Sustainable Water Future: Proceedings of OICWE2020, pp. 361-370. https://www.icevirtuallibrary.com/doi/epdf/10.1680/oicwe.65253.361

Azhar, A. A.; Haron, N. F.; Ismail, H. B. 2022. The Efficiency Assessment of Poly-Aluminium Chloride (PAC) in Water Treatment Plant Process: a case Study at Sultan Iskandar Water Treatment Plant, Johor. Journal of Sustainable Civil Engineering and Technology, 1, (2), 8-16. https://doi.org/10.24191/jscet.v1v2.8-16

Brasil. 2005. Resolução CONAMA n° 357, de 17 de março de 2005. Classificação de águas, doces, salobras e salinas do Território Nacional. Available at: https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altrd_res_393_2007_397_2008_410_2009_430_2011.pdf. Access at: September 10, 2023.

Coutinho, W. 2007. Emprego da flotação a ar dissolvido no tratamento de cursos d'água: avaliação de desempenho da estação de tratamento dos córregos Ressaca e Sarandi afluentes à Represa da Pampulha. Dissertação de Mestrado. Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais. 118p.

Cristóvão, R. O.; Pinto, V. M. S.; Martins, R. J. E.; Loureiro, J. M.; Boaventura, R. A. R. 2016. Assessing the influence of oil and grease and salt content on fish canning wastewater biodegradation through respirometric tests. Journal of Cleaner Production, 127, 343-351. https://doi.org/10.1016/j.jclepro.2016.04.057

Di Bernardo, L.; Dantas, A. D. B. 2005. Métodos e técnicas de tratamento de água. Rima, Second Edition. 792p.

Ferrari, T. N.; Julio, M.; Julio, T. S. 2011. Emprego do sulfato de alumínio e do cloreto de polialumínio em estudos de tratabilidade da água que abastece o município de São José dos Campos-SP. Engenharia Ambiental, 8, (4), 118-137.

Han, M.; Kim, T.; Kim, J. 2007. Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process. Water Science & Technology, 56, (10), 109-15. https://doi.org/10.2166/wst.2007.779

Ilmos, E.; Ololade, O. O.; Ogola, H. J. O.; Selvarajan, R. 2020. Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. International Journal of Environmental Research and Public Health, 17, (3), 1096. https://doi.org/10.3390/ijerph17031096

Lédo, P. G. S.; Lima, R. F. S.; Paulo, J. B. A. 2010. Efficiency of aluminium sulphate and Moringa oleifera seeds as coagulants for the clarification of water. Land Contamination & Reclamation, 18, (1), 57-64.

Lee, C. L.; Robinson, J.; Chong, M. F. 2014. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92, 489-508. https://doi.org/10.1016/j.psep.2014.04.010

Manda, I. K. M.; Chidya, R. C. G.; Saka, J. D. K.; Biswick, T. T. 2016. Comparative assessment of water treatment using polymeric and inorganic coagulants. Physics and Chemistry of the Earth, Parts A/B/C, 93, 119-129. https://doi.org/10.1016/j.pce.2015.09.008

Meyer, A. M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H. P. 2019. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Science of the Total Environment, 651, 2323-2333. https://doi.org/10.1016/j.scitotenv.2018.10.069

Minas Gerais. 2008. Deliberação Normativa Conjunta COPAM/CERH-MG Nº 1, de 05 de maio de 2008. Available at: https://www.compe.org.br/estadual/deliberacoes/conjunta/1-2008.pdf. Access at: September 10, 2023.

Santos, F. S.; Oliveira, S. M.; Cammarota, M. C.; Yokoyama, L. 2014. Avaliação da eficiência do processo de coagulação/floculação aplicado ao tratamento primário de efluente da indústria petroquímica. Engevista, 16, (4), 404-413. https://doi.org/10.22409/engevista.v16i4.581

Saxena, K.; Brighu, U. 2020. Comparison of floc properties of coagulation systems: Effect of particle concentration, scale and mode of flocculation. Journal of Environmental Chemical Engineering, 8, (5), 104311. https://doi.org/10.1016/j.jece.2020.104311

Souza, P. C.; Pereira, N. C.; Gonçalves, Consolin Filho, N.; Rodrigues, P. H.; Jamarim, V. M. 2016. Estudo do tratamento de efluente têxtil atraves de processos de coagulação/ floculação e eletrocoagulação. Revista E-xacta, 9, (2), 123-132. https://revistas.unibh.br/dcet/article/view/1953/1063

Shahbazi, B.; Rezai, B.; Koleini, S. M. J. 2010. Bubble–particle collision and attachment probability on fine particles flotation. Chemical Engineering and Processing: Process Intensification. 49, 622-627. https://doi.org/10.1016/j.cep.2010.04.009

Tamburus, I. E.; Rocha, V. C.; Senhuk, A. P. M. S.; Anhê, A. C. B. M. 2020. Efficiency of the activated sludge system of an electrical equipment industry. Ciência e Natura, 42, (e35), 1-19. https://doi.org/10.5902/2179460X41675

Van Berkel, R. 2007. Cleaner production and eco-efficiency initiatives in Western Australia 1996–2004. Journal of Cleaner Production, 15, (8-9), 741-755. https://doi.org/10.1016/j.jclepro.2006.06.012

Vaz, L. G.; L.; Klen, M. R.F.; Veit, M. T.; Silva, E. A.; Barbiero, T. A.; Bergamasco, R. 2010. Avaliação da eficiência de diferentes agentes coagulantes na remoção de cor e turbidez em efluente de galvanoplastia. Eclética Química, 35, (4), 45-54. https://doi.org/10.1590/S0100-46702010000400006

Voltan, P. E. N. 2007. Avaliação da ruptura e recrescimento de flocos na eficiência de sedimentação em água com turbidez elevada. Dissertação de Mestrado. Universidade de São Paulo. São Carlos, São Paulo. 205p.

Wang, Y.; Jin, X.; Yang, S.; Wang, G.; Xu, L.; Jin, P.; Shi, X.; Shi, Y. 2021. Interactions between flocs and bubbles in the separation zone of dissolved air flotation system. Science of The Total Environment, 761, 143222. https://doi.org/10.1016/j.scitotenv.2020.143222

Yukselen, M. A.; Gregory, J. 2002. Breakage and re-formation of alum flocs. Environmental Engineering Science, 19, (4), 229-236. https://doi.org/10.1089/10928750276027154

Downloads

Publicado

2025-03-12

Como Citar

Prado, M., Martineli, T., Lucas, B. C. L., Santos, C. E. D. dos, Silva, R. S. G. da, & Rocha, V. C. (2025). Analysis and operational improvement of a dissolved air flotation device treating wastewater from the production of electrical equipment. Journal of Environmental Analysis and Progress, 10(1), 052–059. https://doi.org/10.24221/jeap.10.1.2025.6402.052-059