Influence of meteorological variables concerning the concentration of particulate material (PM2.5)

Autores

DOI:

https://doi.org/10.24221/jeap.10.3.2025.7100.101-108

Palavras-chave:

Meteorological variables, particulate material concentration, wind speed, wind direction, current air quality index

Resumo

Air pollution is a problem in everyday life, where the advancement of industrialization presents potential exacerbation of emissions levels and atmospheric pollutant concentrations. This study evaluated the influence that meteorological variables, temperature, relative humidity, precipitation, wind speed, and direction, exert on the concentration of particulate matter, especially PM2.5, in urban areas. Procedures involving air quality monitoring data and meteorological data were established over 45 days, utilizing data from monitoring stations for both air quality and meteorology installed nearby to evaluate the mean, average standard deviation, and predominance of the collected values. The results showed how atmospheric dynamics directly influence PM concentration levels, since for wind directions coming from the 1st quadrant (N, NNE, NE, and ENE) with low speeds or equal to zero, concentration levels were high; for winds coming from the 3rd quadrant (S, SSW, SW, and WSW) with elevated speeds or different from zero, concentration levels were low. Thus, it was possible to verify that the dynamics of wind speed and direction should be analyzed together since they depend on each other and proved to be determining factors for PM concentration levels.

Downloads

Não há dados estatísticos.

Referências

Akyüz, M.; Çabuk, H. 2009. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J. Hazard. Mater., 170, 13-21. https://doi.org/10.1016/j.jhazmat.2009.05.029

Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. de M.; Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift, 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Brasil. 2020. Guia técnico para o monitoramento e avaliação da qualidade do ar. Brasília, DF. 136p.

Brasil, 2018. Resolução CONAMA no 491. Dispõe sobre padrões Qual. do ar. [on line WWW] Available at: https://www.in.gov.br/web/guest/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895/do1-2018-11-21-resolucao-n-491-de-19-de-novembro-de-2018-51058603. Access at: March 31, 2023.

EPA. 1999. Air Quality Index Reporting, Final Rule. Fed. Regist., 64, 42530-42549.

Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. 2011. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water, Air, Soil Pollut, 215, 365-372. https://doi.org/10.1007/s11270-010-0484-z

Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. 2016. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci., 21, 65. https://doi.org/10.4103/1735-1995.189646

Gomes, J. F. P. 2010. Poluição Atmosférica, 2a. ed. Polindústria, Porto, Portugal. 268p.

IBGE, 2022. Criciúma. Instituto Brasileiro de Geografia e Estatística. Available at: https://cidades.ibge.gov.br/brasil/sc/criciuma/panorama. Access at: December 17, 2023.

IBGE, 2021. Mapa municipal de Criciúma Instituto Brasileiro de Geografia e Estatística. [on line WWW] Available at: https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-municipais/31452-colecao-de-mapas-municipais.html. Access at: March, 18, 2023.

Kanski, A. 2015. The World’s Greenhouse Gas Emissions in One Graphic. The Australian. [on line WWW]. Available at: https://www.theaustralian.com.au/news/the-worlds-greenhouse-gas-emissions-in-one-graphic/news-story/53cee925fd24465b88b8ede1daea85c4Access at: May, 04, 2023.

Kelly, F. J.; Fussell, J. C. 2015. Air pollution and public health: emerging hazards and improved understanding of risk. Environ. Geochem. Health, 37, 631-649. https://doi.org/10.1007/s10653-015-9720-1

Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. 2020. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Heal, 8, 1-13. https://doi.org/10.3389/fpubh.2020.00014

Miraglia, S. G. E. K.; Gouveia, N. 2014. Custos da poluição atmosférica nas regiões metropolitanas brasileiras. Ciência & Saúde Coletiva, 19, 10, 4141-4147, http://dx.doi.org/10.1590/1413-812320141910.09232014

Rigo, D. S.; Colombo, R.; Grub, J. 2008. A real problematização e controle da poluição atmosférica no Brasil. In: 1° Congresso Internacional de Tecnologias para o Meio Ambiente, Bento Gonçalves, RS, pp. 1-8.

Squizzato, R.; Nogueira, T.; Martins, L. D.; Martins, J. A.; Astolfo, R.; Machado, C. B.; Andrade, M. F.; de Freitas, E. D. 2021. Beyond megacities: tracking air pollution from urban areas and biomass burning in Brazil. npj Clim Atmos Sci, 4, 17. https://doi.org/10.1038/s41612-021-00173-y

Souza, N. F. 2010. A qualidade do ar em Morro da Fumaça e seus efeitos sobre a saúde da população. Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC. 80p.

Tai, A. P. K.; Mickley, L. J.; Jacob, D. J. 2010. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 44, 3976-3984. https://doi.org/10.1016/j.atmosenv.2010.06.060

USEPA, 2018. 454/B-18-007: Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI). 17p.

Wang, J.; Ogawa, S. 2015. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health, 12, 9089-9101. https://doi.org/10.3390/ijerph120809089

Wang, J.; Wang, Y.; Liu, H.; Yang, Y.; Zhang, X.; Li, Y.; Zhang, Y.; Deng, G. 2013. Diagnostic identification of the impact of meteorological conditions on PM2.5 concentrations in Beijing. Atmos. Environ., 81, 158-165. https://doi.org/10.1016/j.atmosenv.2013.08.033

Wood, D. A. 2022. Trend decomposition aids forecasts of air particulate matter (PM2.5) assisted by machine and deep learning without recourse to exogenous data. Atmos. Pollut. Res., 13, 101352. https://doi.org/10.1016/j.apr.2022.101352

Wrege, M. S.; Steinmetz, S.; Reisser Júnior, C.; Almeida, I. R. 2012. Atlas climático da região sul do Brasil, 2a. ed. Embrapa, Brasília, DF. 333p.

Downloads

Publicado

2025-07-04

Como Citar

Marcello, C. H. D., Saviatto, E., Zaccaron, A., Hoffmann, M. V. G. de S., Pavei, P. T., & Peterson, M. (2025). Influence of meteorological variables concerning the concentration of particulate material (PM2.5). Journal of Environmental Analysis and Progress, 10(3), 101–108. https://doi.org/10.24221/jeap.10.3.2025.7100.101-108