USO DO SOLO E VARIAÇÕES CLIMÁTICAS NA CAATINGA E SEUS EFEITOS SOBRE A COMUNIDADE DE NEMATOIDES
Palabras clave:
Agricultura, Cadeia alimentar do solo, Estruura de comunidade, Florestas tropicais sazonalmente secasResumen
A biodiversidade do solo enfrenta pressões crescentes das ações humanas, incluindo a conversão, degradação e fragmentação de habitats. O efeito desses fatores somado às mudanças climáticas não reduz apenas a diversidade e abundância da biota do solo, mas também suas funções e serviços ecossistêmicos. Os nematoides constituem um importante modelo de biota para compreender as respostas da biodiversidade do solo aos efeitos dos distúrbios antrópicos e mudanças climáticas, uma vez que eles ocupam uma posição central na cadeia alimentar e apresentam uma diversidade taxonômica e funcional. A Caatinga, um mosaico de florestas tropicais sazonalmente secas que ocorre somente no Brasil, tem enfrentado forte influência de distúrbios antrópicos, como a agropecuária e exploração de diversos recursos naturais. Além disso, mudanças climáticas também ameaçam a Caatinga e podem até agravar os efeitos de distúrbios antrópicos. As funções e serviços ecossistêmicos fornecidos pelos nematoides em florestas tropicais são afetados principalmente por distúrbios físicos no solo, fatores edáficos, temperatura e precipitação.Descargas
Citas
ADAMCZYK, B.; KITUNEN, V.; SMOLANDER, A. Response of soil C and N transformations to condensed tannins and different organic N-condensed tannin complexes. Applied Soil Ecology, 64: 163-170. 2013.
BAI, W.; WAN, S.; NIU, S.; LIU, W.; CHEN, Q.; WANG, Q.; ZHANG, W.; HAN, X.; LI, L. Increased temperature and precipitation interact to affect root production mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 16: 1306-1316. 2010.
BARDGETT, R.D.; CHAN, K.F. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montage grassland ecosystems. Soil Biology and Biochemistry, 31: 1007-1014. 1999.
BARDGETT, R. D.; VAN DER PUTTEN, W. H. Belowground biodiversity and ecosystem functioning. Nature, 515: 505-511. 2014.
BARNES, A.D.; ALLEN, K.; KREFT, H.; CORRE, M.D.; JOCHUM, M.; VELDKAMP, E.; CLOUGH, Y.; DANIEL, R.; DARRAS, K.; DENMEAD, L.H.; HANEDA, N.F.; HERTEL, D.; KNOHL, A.; KOTOWSKA, M.M.; KURNIAWAN, S.; MEIJIDE, A.; REMBOLD, K.; PRABOWO, W.E.; SCHNEIDER, D.; TSCHARNTKE, T.; BROSE, U. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature, Ecology Evolution, 10: 1511-1519. 2017.
BOAG, B.; YEATES, G.W. Soil nematode biodiversity in terrestrial ecosystems. Biodiversity & Conservation, 7: 617-630. 1998.
BONGERS, T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14-19. 1990.
BONGERS, T.; BONGERS, M. Functional diversity of nematodes. Applied Soil Ecology, 10: 239-251. 1998.
BONGERS, T.; FERRIS, H. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14: 224-228. 1999.
BROWN, D.H.; FERRIS, H.; FU, S.; PLANT, R. Positive feedback in a model food web. Theoretical Population Biology, 65: 143-152. 2004.
BURKETT, V.R.; SUAREZ, A.G.; BINDI, M.; CONDE, C.; MUKERJI, R.; PRATHER, M.J.; ST. CLAIR, A.L.; YOHE, G.W. POINT OF DEPARTURE. IN: FIELD, C.B.; BARROS, V.R.; DOKKEN, D.J.; MACH, K.J.; MASTRANDREA, M.D.; BILIR, T.E.; CHATTERJEE, M.; EBI, K.L.; ESTRADA, Y.O.; GENOVA, R.C.; GIRMA, B., KISSEL, E.S.; LEVY, A.N.; MACCRACKEN, S.; MASTRANDREA, P.R.; WHITE, L.L. (Eds), Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 169-194. 2014.
DARBY, B.J.; NEHER, D.A.; HOUSMAN, D.C.; BELNAP, J. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna. Soil Biology and Biochemistry, 43: 1474-1481. 2011.
DA SILVA, J.V.C.L.; HIRSCHFELD, M.N.C.; CARES, J.E.; ESTEVES, A.M. Land use, soil properties and climate variables influence the nematode communities in the Caatinga dry forest. Applied Soil Ecology, 150: 103474. 2020.
DE LEY, P.; BLAXTER, M. A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. Nematology Monographs and Perspectives. Editors: Howard Ferris. Brill. p. 633-653. 2004.
DE VRIES, F.T.; LIIRI, M.E.; BJØRNLUND, L.; BOWKER, M.A.; CHRISTENSEN, S.; SETÄLÄ, H.M.; BARDGETT, R.D. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2: 276–280. 2012.
DE VRIES, F.T.; THÉBAULT, E.; LIIRI, M.; BIRKHOFER, K.; TSIAFOULI, M.A.; BJØRNLUND, L.; JØRGENSEN, H.B.; BRADY, M.V.; CHRISTENSEN, S.; DE RUITER, P.C.; D’HERTEFELDT, T. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 35: 14296-14301. 2013.
EISENHAUER, N.; CESARZ, S.; KOLLER, R.; WORM, K.; REICH, P.B. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18: 435-447. 2012.
FERRIS, H. Contribution of Nematodes to the Structure and Function of the Soil Food Web. Journal of Nematology, 42: 63-67. 2010a.
FERRIS, H. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46: 97-104. 2010b.
FERRIS, H.; SÁNCHEZ-MORENO, S.; BRENNAN, E.B. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology, 61: 16-25. 2012.
FERRIS, H.; TUOMISTO, H. Unearthing the role of biological diversity in soil health. Soil Biology and Biochemistry, 85: 101-109. 2015.
FERRIS, H.; VENETTE, R.C.; LAU, S.S. Population energetics of bacterial-feeding nematodes: carbon and Nitrogen budgets. Soil Biology and Biochemistry, 29: 1183-1194. 1997.
FERRIS, H.; VENETTE, R.C.; SCOW, K.M. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Applied Soil Ecology, 25: 19-35. 2004.
FREY, S.D.; ELLIOTT, E.T.; PAUSTIAN, K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31: 573-585. 1999.
FU, S.; FERRIS, H.; BROWN, D.; PLANT, P. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry, 37: 1979-1987. 2005.
GRIFITHS, B.S.; CAUL, S. Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biology and Fertility of Soils, 5: 201-207. 1993.
HAYGARTH, P.M.; RITZ, K. The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy, 26: S187-S197. 2009.
HOOGEN, J.; GEISEN, S.; ROUTH, D.; FERRIS, H.; TRAUNSPURGER, W.; WARDLE, D.A.; DE GOEDE, R.G.M.; ADAMS, B.J.; AHMAD, W.; ANDRIUZZI, W.S.; BARDGETT, R.D.; BONKOWSKI, M.; CAMPOS-HERRERA, R.; CARES, J.E.; CARUSO, T.; CAIXETA, L.B.; CHEN, X.; COSTA, S.R.; CREAMER, R.; CASTRO, J.M.C.; DAM, M.; DJIGAL, D.; ESCUER, M.; GRIFFITHS, B.S.; GUTIÉRREZ, C.; HOHBERG, K.; KALINKINA, D.; KARDOL, P.; KERGUNTEUIL, A.; KORTHALS, G.; KRASHEVSKA, V.; KUDRIN, A.A.; LI, Q.; LIANG, W.; MAGILTON, M.; MARAIS, M.; MARTÍN, J.A.R.; MATVEEVA, E.; MAYAD, E.H.; MULDER, C.; MULLIN, P.; NEILSON, R.; NGUYEN, T.A.D.; NIELSEN, U.N.; OKADA, H.; RIUS, J.E. P.; PAN, K.; PENEVA, V.; PELLISSIER, L.; SILVA, J.C.P.; PITTELOUD, C.; POWERS, T.O.; POWERS, K.; QUIST, C.W.; RASMANN, S.; MORENO, S.S.; SCHEU, S.; SETÄLÄ, H.; SUSHCHUK, A.; TIUNOV, A.V.; TRAP, J.; PUTTEN, W.V.D.; VESTERGÅRD, M.; VILLENAVE, C.; WAEYENBERGE, L.; WALL, D.H.; WILSCHUT, R.; WRIGHT, D.G.; YANG, J.; CROWTHER, T.W. Soil nematode abundance and functional group composition at a global scale. Nature, 572: 194-198. 2019.
ITO, T.; ARAKI, M.; HIGASHI, T.; KOMATSUZAKI, M.; KANEKO, N.; OHTA, H. Responses of soil nematode community structure to soil carbon changes due to different tillage and cover crop management practices over a nine-year period in Kanto, Japan. Applied Soil Ecology, 89: 50-58. 2015.
LEAL, I.R.; DA SILVA, J.M.C.; TABARELLI, M.; LACHER, T.E. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19: 701-706. 2005.
LI, N.; PAN, F.J.; HAN, X.Z.; ZHANG, B. Development of soil food web of microbes and nematodes under different agricultural practices during the early stage of pedogenesis of a Mollisol. Soil Biology and Biochemistry, 98: 208-216. 2016.
LIU, T.; WHALEN, J.K.; RAN, W.; SHEN, Q.; LI, H. Bottom-up control of fertilization on soil nematode communities differs between crop management regimes. Soil Biology and Biochemistry, 95: 198-201. 2016.
MAGRIN, G. O.; MARENGO, J. A.; BOULANGER, J. B.; BUCKERIDGE, M. S.; CASTELLANOS, E.; POVEDA, G.; … VICUÑA, S. Central and South America. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. In V. R. BARROS, C. B.; FIELD, D. J.; DOKKEN, M. D.; MASTRANDEA, K. J. MACH … L. L. White (Eds.), Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1499–1566). Cambridge and New York: Cambridge University Press. 2014.
MANN, C.; LYNCH, D.; FILLMORE, S.; MILLS, A. Relationships between field management, soil health, and microbial community composition. Applied Soil Ecology, 144: 12-21. 2019.
MBUTHIA, L.W.; ACOSTA-MARTÍNEZ, V.; DEBRUYN, J.; SCHAEFFER, S.; TYLER, D.; ODOI, E.; MPHESHEA, M.; WALKER, F.; EASH, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology and Biochemistry, 89: 24-34. 2015.
NEHER, D.A. Role of nematodes in soil health and their use asindicators. Journal of Nematology, 33: 161. 2001.
NEHER, D.A.; WEICHT, T.R.; BARBERCHECK, M.E. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology, 54: 14-23. 2012.
NIELSEN, U.N.; AYRES, E.; WALL, D.H.; LI, G.; BARDGETT, R.D.; WU, T.; GAREY, J.R. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23: 968-978. 2014.
OLIVEIRA, F.M.; ANDERSEN, A.N.; ARNAN, X.; RIBEIRO‐NETO, J.D.; ARCOVERDE, G.B.; LEAL, I.R. Effects of increasing aridity and chronic anthropogenic disturbance on seed dispersal by ants in Brazilian Caatinga. Journal of Animal Ecology, 88: 870-880. 2019.
OLIVEIRA, F.M.P.; RIBEIRO-NETO, J.D.; ANDERSEN, A.N.; LEAL, I.R. Chronic anthropogenic disturbance as secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Environmental Conservation, 44: 115-123. 2017.
PAPATHEODOROU, E.M.; ARGYROPOULOU, M.D.; STAMOU, G.P. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Applied Soil Ecology, 25: 37-49. 2004.
PENNINGTON, R.T.; LAVIN, M.; OLIVEIRA-FILHO, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 40: 437-457. 2009.
PRADO, D.E. As caatingas da América do Sul. Ecologia e conservação da Caatinga (eds I.R. LEAL; J.M.C. SILVA), pp. 3–74. Editora Universitária, Recife, Brazil, 2003.
RIBEIRO, E.M.S.; ARROYO-RODRÍGUEZ, V.; SANTOS, B.A.; TABARELLI, M.; LEAL, I.R. Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology, 52: 611-620. 2015.
RIBEIRO-NETO, J.; ARNAN, X.; TABARELLI, M.; LEAL, I. R. Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation, 25: 943-956. 2016.
RITO, K.F.; ARROYO-RODRÍGUEZ, V.; QUEIROZ, R.T.; LEAL, I.R.; TABARELLI, M. Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology, 105: 828-838. 2017.
SCHWARZ, B.; BARNES, A.D.; THAKUR, M.P.; BROSE, U.; CIOBANU, M.; REICH, P.B.; RICH, R.L.; ROSENBAUM, B.; STEFANSKI, A.; EISENHAUER, N. Warming alters energetic structure and function but not resilience of soil food webs. Nature climate change, 7: 895-900. 2017.
SEDDON, A.W.R.; MACIAS-FAURIA, M.; LONG, P.R.; BENZ, D.; WILLIS, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531: 229-232. 2016.
SIEBERT, J.; SÜNNEMANN, M.; AUGE, H.; BERGER, S.; CESARZ, S.; CIOBANU, M.; GUERRERO-RAMÍREZ, N.R.; EISENHAUER, N. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Scientific Reports, 9: 1-12. 2019.
SILVA, J.M.C.; LEAL, I.R.; TABARELLI, M. eds. Caatinga: the largest tropical dry forest region in South America. Springer, 2018.
SONG, D.; PAN, K.; TARIQ, A.; SUN, F.; LI, Z.; SUN, X.; ZHANG, L.; OLUSANYA, O.A.; WU, X. Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114: 161-169. 2017.
STRICKLAND, M.S.; ROUSK, J. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42: 1385-1395. 2010.
THAKUR, M.P.; REAL, I.M.D; CESARZ, S.; STEINAUER, K.; REICH, P.B.; HOBBIE, S.; CIOBANU, M.; RICH, R.; WORM, K.; EISENHAUER, N. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 135: 184-193. 2019.
TREONIS, A. M.; MICHELLE, E. H.; O'LEARY, C. A.; AUSTIN, E. E.; MARKS, C. B. Identification and localization of food‐source microbial nucleic acids inside soil nematodes. Soil Biology and Biochemistry, 42: 2005- 2011. 2010.
TREONIS, A.M.; SUTTON, K.A.; UNANGST, S.K.; WREN, J.E.; DRAGAN, E.S.; MCQUEEN, J.P. Soil organic matter determines the distribution and abundance of nematodes on alluvial fans in Death Valley, California. Ecosphere, 10: 02659. 2019.
VAZQUEZ, C.; DE GOEDE, R.G.; KORTHALS, G.W.; RUTGERS, M.; SCHOUTEN, A.J.; CREAMER, R. The effects of increasing land use intensity on soil nematodes: A turn towards specialism. Functional Ecology, 33: 2003-2016. 2019.
WAGG, C.; DUDENHÖFFER, J.H.; WIDMER, F.; VAN DER HEIJDEN, M.G. Linking diversity, synchrony and stability in soil microbial communities. Functional Ecology, 32: 1280-1292. 2018.
YEATES, G.W. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37: 199-210. 2003.
YEATES, G.W.; BONGERS, T.; DE GOEDE, R.G.M.; FRECKMAN, D.W.; GEORGIEVA, S.S. Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25: 315-331. 1993.
ZHANG, X.; FERRIS, H.; MITCHELL, J.; LIANG, W. Ecosystem services of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry, 111: 36-43. 2017.
ZHAO, J.; WANG, X.; SHAO, Y.; XU, G.; FU, S. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43: 954-960. 2011.