Macronutrients and essential amino acids on the digestive process of the freshwater teleost matrinxã (Brycon amazonicus)
DOI:
https://doi.org/10.26605/medvet-v15n4-2266Palavras-chave:
Brycon amazonicus, dietary amino acids, digestive enzymes, enzyme regulation, nutritionResumo
The objective of this work was to evaluate the effect of macronutrients and essential amino acids on the digestive process of the freshwater teleost matrinxã (Brycon amazonicus). Juveniles were fed with diets containing starch plus free amino acids or oil plus free amino acids for 15 days. These fish were compared with others fed with diets containing starch or oil without addition of free amino acids. After the experimental span, 12 fish from each treatment were randomly sampled to collect stomach, pyloric cecum, anterior and posterior intestine for assaying digestive enzymes activity. Increase of gastric proteolysis due to dietary amino acids were observed. Amylolytic, proteolytic and lipolytic activities in intestine sections were also positive due to dietary amino acids. However, proteolytic and lipolytic activities in pyloric cecum were not responsive to dietary changes. Moreover, the absence of starch in the diets resulted in decrease of amylolysis, and very low levels of oil did not change the lipolytic activity. Based on the results of the present study, the inclusion of essential amino acids in diets for juvenile matrinxã promotes a nutrition strategy to improve digestive function.Downloads
Referências
Abidi S.F.; Khan, M.A. Total sulphur amino acid requirement and cystine replacement value for fingerling rohu, Labeo rohita: effects on growth, nutrient retention and body composition. Aquaculture Nutrition, 17(2): 583-594, 2011.
Adel, M.; Gholaghaie, M.; Khanjany, P.; Citarasu, T. Effect of dietary soybean lecithin on growth parameters, digestive enzyme activity, antioxidative status and mucosal immune responses of common carp (Cyprinus carpio). Aquaculture Nutrition, 23: 1145-1152, 2017.
Alami-Durante, H.; Cluzeaud, M.; Bazin, D.; Vachot, C.; Kaushik, S. Variable impacts of L-arginine or L-NAME during early life on molecular and cellular markers of muscle growth mechanisms in rainbow trout. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 242: 1-12, 2020.
Albro, P.W.; Hall, R.D.; Corbett, J.T.; Schroeder, J. Activation of non-specific lipase (EC 3.1.1.) by bile salts. Biochimica et Biophysica Acta, 835(3): 477-490, 1985.
Arbeláez-Rojas, G.A.; Moraes, G. Interação do exercício de natação sustentada e da densidade de estocagem no desempenho e na composição corporal de juvenis de matrinxã Brycon amazonicus. Ciência Rural, 39(1): 201-208, 2009.
Bernfeld, P. Amylases, ? and ?. Methods Enzymology, 1: 149-158, 1955.
Bradford, M.M.; Mcrorie, R.A.; William, W.L. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254, 1976.
Corrêa, C.F.; Aguiar, L.H.; Lundstedt, L.M.; Moraes, G. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147(4): 857–862, 2007.
Dabrowski, K.; Arslan, M.; Terjesen, B.F.; Zhang, Y. The effect of dietary indispensable amino acid imbalances on feed intake: Is there a sensing of deficiency and neural signaling present in fish? Aquaculture, 268: 136-142, 2007.
De Almeida, L.C.; Lundstedt, L.M.; Moraes, G. Digestive enzyme responses of tambaqui (Colossoma macropomum) fed on different levels of protein and lipid. Aquaculture Nutrition, 12(6): 443-450, 2006.
Frasca-Scorvo, C.M.; Carneiro, D.J.; Malheiros, E.B. Efeito do manejo alimentar no desempenho do matrinxã Brycon amazonicus em tanques de cultivo Acta Amazonica, 37(4): 621-628, 2007.
Honorato, C.A.; De Almeida, L.C.; Camilo, R.Y.; Moraes, G.; Nunes, C.D.S.; Carneiro, D.J. Dietary carbohydrate and food processing affect the digestive physiology of Piaractus mesopotamicus. Aquaculture Nutrition, 22(4): 857–864, 2016.
Hummel, B.C.W. A modified spectrophotometric determination of chymotrypsin, trypsin and trombin. Canadian Journal of Biochemistry and Physiology, 37(12): 1393-1399, 1959.
Jiang, T.T.; Feng,L.. Liu, Y.; Jiang, W.D.; Jiang, J.; Li, S.H.; Tang, L.; Kuang, S.Y.; Zhou, X.Q. Effects of exogenous xylanase supplementation in plant protein-enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 20(6): 632-645, 2014.
Klomklao, S.; Kishimura, H.; Nonami, Y.; Benjakul, S. Biochemical properties of two isoforms of trypsin purified from the intestine of skipjack tuna (Katsuwonus pelamis). Food Chemistry, 115(1): 155-162, 2009.
Liao, Y.J.; Ren, M.C.; Liu, B.; Sun, S.M.; Cui, H.H.; Xie, J.; Zhou, Q.L.; Pan, L.K.; Chen, R.L.; GE, X.P. Dietary methionine requirement of juvenile blunt snout bream (Megalobrama amblycephala) at a constant dietary cystine level. Aquaculture Nutrition, 20(6): 741-752, 2014.
López-López, S.; Nolasco, H.; Villarreal-Colmenares, H.; Civera-Cerecedo, R. Digestive enzymes response to supplemental ingredientes in practical diets for juvenile freshwater crayfish Cherax quadricarinatus. Aquaculture Nutrition, 11(2): 79-85, 2005.
Mansano, C.F.M.; do Nascimento, T.M.T.; Peres, H.; Rodrigues, F.H.F.; Khan, K.U.; Romaneli, R.S.; Sakomura, N.K.; Fernandes, J.B.K. Determination of the optimum dietary essential amino acid profile for growing phase of Nile tilapia by deletion method. Aquaculture, 523: 735204, 2020.
Melo, J.F.B.; Lundstedt, L.M.; Moraes, G.; Inoue, L.A.K.A. Effect of different concentrations of protein on the digestive system of juvenile silver catfish. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(2): 450-457, 2012.
Neu, D.H.; Boscolo, W.R.; De Almeida, F.L.A.; Zaminhan Hassemer, M.; Dallagnol, J.M.; Furuya, W.M. Desempenho produtivo, hematologia e crescimento muscular de tilápia do Nilo alimentadas com isoleucina. Boletim do Instituto de Pesca, 43: 231-242, 2017.
Nijima, A. Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. Journal Nutrition, 130(4): 971-973, 2000.
Nuche-Berenguer, B.; Moreno, P.; Jensen, R.T. Elucidation of the roles of the Src kinases in pancreatic acinar cell signaling. Journal of Cellular Biochemistry, 116(1): 22-36, 2015.
Park, J.T.; Johnson, M.J. A submicro determination of glucose. Journal of Biological Chemistry, 181(1): 140-151, 1949.
Perera, E.; Simon, C. Digestive physiology of spiny lobsters: implications for formulated diet development. Reviews in Aquaculture, 6(4): 1-19, 2014.
Pujante, I.M.; Díaz?López, M.; Mancera, J.M.; Moyano, F.J. Characterization of digestive enzymes protease and alpha?amylase activities in the thick?lipped grey mullet (Chelon labrosus, Risso 1827). Aquaculture Research, 48(2): 367-376, 2017.
Walter, H.E. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Methods of Enzymatic Analysis, Verlag Chemie, Weinheim, 1984. p. 270-277.
Xiao, W.W.; Feng, L.; Liu, Y.; Jiang, J.; Hu, K.; Jiang, W.D.; Li, S.H.; Zhou, X.Q. Effects of dietary methionine hydroxy analogue supplement on growth, protein deposition and intestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 17(4): 408-417, 2011.
Yamashiro, D.; Neu, D.H.; Moro, E.B.; Feiden, A.; Signor, A.; Boscolo, W R.; Bittencourt, F. Performance and muscular development of Nile tilapia larvae (Oreochromis niloticus) fed increasing concentrations of phenylalanine. Agricultural Sciences, 7(12): 900-910, 2016.
Zambonino Infante, J.; Cahu, C.L. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture, 268(1-4): 98-105, 2007.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Medicina Veterinária (UFRPE)
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- A Revista de Medicina Veterinária permite que o autor retenha os direitos de publicação sem restrições, utilizando para tal a licença Creative Commons CC BY-NC-SA 4.0.
- De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- NãoComercial — Você não pode usar o material para fins comerciais.
- CompartilhaIgual — Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.