Interação microbiana e metanogênese em ruminantes – uma revisão
DOI:
https://doi.org/10.26605/medvet-v13n1-2615Palavras-chave:
archaea, metano, microbiota autoctone, rúmen.Resumo
A produção animal contribui de forma significativa na emissão de gases de efeito estufa de origem antropogênica. A fermentação entérica e ruminal produz metano que representa o gás de maior relevância nesse efeito. Nesta revisão objetivou-se analisar os efeitos das práticas utilizadas para mitigação da emissão do metano (CH4) na interação microbiológica do rúmen. O CH4 entérico emitido pelos ruminantes resulta da atividade da população de archaeas metanogênicas que desenvolveram relação evolutiva complexa com a comunidade de protozoários ciliados, bactérias e fungos anaeróbicos. Esses microrganismos produzem substratos que são utilizados pelas metanogênicas no metabolismo energético, gerando CH4. Em termos produtivos, representa baixa eficiência na utilização da energia do alimento ingerido, porém, metabolicamente é um processo favorável para o ecossistema ruminal. A manipulação do ambiente ruminal com vista a reduzir a emissão de metano e melhorar a eficiência energética, tem se baseado na melhora da qualidade das pastagens, manejo nutricional e alimentar, seleção e melhoramento genético. Ademais, a utilização dessas práticas resultam em modificações na estrutura microbiana e nos mecanismos fermentativos a curto prazo. Contudo, estudos são recomendados para avaliar os efeitos das diversas técnicas à longo prazo no ambiente ruminal.Downloads
Referências
Al-Jumaili, W.S.; Goh, Y.M.; Jafari, S.; Rajion, M.A.; Jahromi, M.F.; Ebrahimi, M. An in vitro study on the ability of tannic acid to inhibit methanogenesis and biohydrogenation of C18 PUFA in the rumen of goats. Annals of Animal Science, 17(2): 491-502, 2017.
Botero, I.C.M.; Cantet, J.M.; Montoya, S.; Londoño, G.A.C.; Rosales, R.B. Producción de metano in vitrode dos gramíneas tropicales solas y mezcladas con Leucaena leucocephala o Gliricidia sepium. Revista CES Medicina Veterinaria y Zootecnia, 8(2): 15-31, 2013.
Beukes, P.C.; Gregorini, P.; Romera, A.J.; Levy, G.; Waghorn, G.C. Improving production efficiency as a strategy to mitigate greenhouse gas emissions on pastoral dairy farms in New Zealand. Agriculture, Ecosystems and Environment, 136: 358-365, 2010.
Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and regional trends in greenhouse gas emissions from livestock. Climatic Change, 126: 203-216, 2014.
Cerri, C.C.; Moreira, C.S.; Alves, P.A.; Raucci, G.S.; Castigioni, B.D.A.; Mello, F.F.C.; Cerri, D.G.P.; Cerri, C.E.P. Assessing the carbon footprint of beef cattle in Brazil: A case study with 22 farms in the State of Mato Grosso. Journal of Cleaner Production, 112: 25932600, 2016.
Cota, O.L.; Maria de Figueredo, D.; Branco, R. H.; Magnani, E.; Ferreira do Nascimento, C.; Freitas de Oliveira, L.; Mercadante, M.E.Z. Methane emission by Nellore cattle subjected to diferente nutritional plans. Tropical Animal Health Production, 46(1): 12291234, 2014.
Denman, S.E.; Fernandez, G.M.; Shinkai, T.; Mitsumori, M.; McSweeney, C.S. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Frontiers in Microbiology, 16(1087): 1-12, 2015.
Du Toit, C.J.L.; Meissner, H.H.; Van Niekerk, W.A. Direct methane and nitrous oxide emissions of South African dairy and beef cattle. South African Journal of Animal Science, 43: 320-339, 2013.
Forabosco, F.; Chitchyan, Z.H.; Mantovani, R. Methane, nitrous oxide emissions and mitigation strategies for livestock in developing countries: A review. South African Journal of Animal Science, 47(3): 269-280, 2017. Freitas, C.E.S.; Duarte, E.R.; Alves, D.D.; Martinele, I.; D´Agosto, M.; Cedrola, F.; Freitas, A.A.M.; Soares, F.D.S.; Beltran, M. Sheep fed with banana leaf hay reduce rumina protozoa population. Tropical Animal Health Production, 49(4): 807-812, 2017.
Grandl, F.; Amelchanka, S.L.; Furger, M.; Clauss, M.; Zeitz, J.O.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. Journal of Dairy Science, 99(5): 3472-3485, 2016.
Hagemann, M.; Hemme, T.; Ndambi, A.; Alqaisi, O.; Sultana, M.N. Benchmarking of greenhouse gas emissions of bovine milk production systems for 38 countries. Animal Feed Science and Techonology, 166-167: 46-58, 2011.
Hayes, B.J.; Lewin, H.A.; Goddard, M.E. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4): 206-214, 2013.
Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 15(14567): 1-15, 2015.
Homem-Junior, A.C.; Ezequiel, J.M.B.; Fávaro, V.R.; Almeida, M.T.C.; Paschoaloto, J.R.; D`Áurea, A.P.; Barbosa de Carvalho, V.; Nocera, B.F.; Cremasco, L.F. Methane production by in vitro ruminal fermentation of feed ingredients. Semina: Ciências Agrárias, Londrina, 38(2): 877-884, 2017. Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; Kindermann, M.; Duval, S. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34): 10663-10668, 2015.
Joch, M.; Cermak, L.; Hakl, J.; Hucko, B.; Duskova, D.; Marounek, M. In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Asian Australasian Journal of Animal Science, 29(7): 952-959, 2016.
Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97: 3231-3261, 2014.
Li, D.; Zhang, Y.; Cui, Z.; He, L.; Chen, W.; Meng, Q.; Ren, L. Effects of Phytoecdysteroids (PEDS) extracted from Cyanotis arachnoidea on rumen fermentation, enzyme activity and microbial efficiency in a continuous-culture System. PloS ONE, 11(4): 1-12, 2016.
Malik, P. K.; Bhatta, R.; Takahashi, J.; Kohn, R. A.; Prasad, C. S. Livestock Production and Climate Change. Animal Feed Science and Techonology, 217: 101-103, 2016.
Malmuthuge, N.; Guan, L.L. Understanding hostmicrobial interactions in rumen: searching the best opportunity for microbiota manipulation. Journal of Animal Science and Biotechnology, 8(8): 1-8, 2017.
Martin, C.; Ferlay, A.; Mosoni, P.; Rochette, Y.; Chilliard, Y.; Doreau, M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 99(5): 3445-3456, 2016.
Meissner, H.H.; Scholtz, M.M.; Palmer, A.R. Sustainability of the South African livestock sector towards 2050 Part 1: Worth and impact of the sector. South African Journal of Animal Science, 43: 282-297, 2013. Metzler-Zebeli, B.U.; Khol-Parisini, A.; Gruber, L.; Zebeli, Q. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing. Journal of Applied Microbiology, 119: 1502-1514, 2015.
Mickdam, E.; Khiaosa-ard, R.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Chizzola, R.; Zebeli, Q. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe, 39: 413, 2016.
Mizrah, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 1-13, 2018.
Mottet, A.; Henderson, B.; Opio, C.; Falcucci, A.; Tempio, G.; Silvestri, S.; Chesterman, S.; Gerber, P.J. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies, Regional Environmental Change, 17: 129-141, 2017.
Nathani, N.M.; Patel, A.K.; Mootapally, C.S.; Reddy, B.; Shan, S.V.; Lunagaria, P.M.; Kothari, R.K.; Joshi, C.G. Effect of roughage on rumen microbiota composition in the efficient feed convert and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics, 16(1116): 1-15, 2015.
Nguyen, S.H.; Li, L.; Hegarty R.S. Effects of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian Australasian Journal of Animal Science, 29(6): 807-813, 2016.
Patra, A.K. Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. AsianAustralasian Journal of Animal Science, 27: 592-599, 2014. Pickering, N.K.; Chagunda, M.G.G.; Banos, G.; Mrode, R.; McEwan, J.C.; Wall, E. Genetic parameters for predicted methane production and laser methane detector measurements. Journal of Animal Science, 93: 11-20, 2015.
Piñeiro Vázquez, A.T.; Canul-Solís, J.R.; AlayónGamboa, J.A.; Chay-Canul, A.J.; AyalaBurgos, A.J.; Aguilar-Pérez, C-F.; SolorioSánchez, F.J.; Ku-Vera, J.C. Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Archivos de Medicina Veterinaria, 47: 263-272, 2015.
Rira, M.; Morgavi, D.P.; Popova, M.; MarieMagdeleine, C.; Silou-Etienne, T.; Archimède, H.; Doreau, M. Ruminal methanogens and bacteria populations in sheep are modified by a tropical environment. Animal Feed Science and Technology, 220: 226-236, 2016. Roehe, R.; Dewhurst, R.J.; Duthie, C.A.; Rooke, J.A.; McKain, N.; Ross, D.W.; Hyslop, J.J.; Waterhouse, A.; Freeman, T.C.; Watson, M.; Wallace, R.J. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genetics, 12(2): 1-20, 2016.
Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8(7): 1-11, 2017.
Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology, 6(37): 1-17, 2015.
Wallace, R.J.; Rooke, J.A.; Duthie, C.A.; Hyslop, J.J.; Ross, D.W.; McKain, N.; Motta de Souza, S.; Snelling, T.J.; Waterhouse, A.; Roehe, R. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beer cattle. Scientific Reports, 4(5892): 1-8, 2014.
Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.A.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Watson, M.; Roehe, R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics, 16(839): 1-14, 2015.
Wallace, R.J.; Snelling, T. J.; McCartney, C.A.; Tapio, I.; Strozzi, F. Application of metaomics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genetics Selection Evolution, 49(9): 1-11, 2017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
- A Revista de Medicina Veterinária permite que o autor retenha os direitos de publicação sem restrições, utilizando para tal a licença Creative Commons CC BY-NC-SA 4.0.
- De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- NãoComercial — Você não pode usar o material para fins comerciais.
- CompartilhaIgual — Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.