Metabolism and physiology of Lactobacilli: a review

Autores

  • Amanda Rafaela Carneiro de Mesquita Laboratório de Processamento e Análises de Alimentos, Departamento de Tecnologia Rural - Universidade Federal Rural de Pernambuco, Recife, Pernambuco – Brasil
  • Lucas Pacheco da Mota Silveira Laboratórios BBraun S/A – Cabo de Santo Agostinho, Pernambuco – Brasil
  • Iranildo José da Cruz Filho Laboratório de Processos Fermentativos, Departamento de Antibióticos Universidade Federal de Pernambuco, Recife, Pernambuco – Brasil
  • Valmir Felix de Lima Laboratório de Cromatografia Instrumental, Departamento de Engenharia Química - Universidade de Pernambuco - Recife, Pernambuco- Brasil
  • Vladimir da Mota Silveira Filho Departamento de Biologia – Universidade de Pernambuco – Campus Garanhuns, Pernambuco- Brasil
  • Ana Albertina Araujo Laboratório de Saúde Pública do Recife, Recife, Pernambuco – Brasil
  • Tacilene Luzia da Silva Secretaria Estadual de Saúde - Recife, Pernambuco – Brasil
  • Klewdma de Freitas Araújo Hospital das clínicas, Universidade Federal de Pernambuco - Recife, Pernambuco – Brasil
  • Luciana da Silva Macedo Laboratório de Análises Clínicas - Hospital Militar de Área do Recife - Recife, Pernambuco

DOI:

https://doi.org/10.24221/jeap.2.2.2017.1202.125-136

Palavras-chave:

Probiotics, lactobacilli, metabolism

Resumo

The consumption of probiotic microorganisms in fermented products has been used for centuries. Lactobacillus spp. is one of the main species studied due to its various beneficial effects to health. This species has great ability to adapt to hostile environments, produces antimicrobial substances capable of destroying or inhibiting the growth of pathogenic bacteria and is involved in the digestion of complex carbohydrates not digested by the host. However, there are still some uncertainties and disagreements about the precise biochemical metabolism of lactobacilli. The aim of this article is to review the metabolism and physiological characteristics of lactobacilli for a better understanding of the benefits that these bacteria promote in the host and for the development of strains and probiotic products with higher health benefits.

Downloads

Não há dados estatísticos.

Referências

Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013). Recent advances in lactic acidproduction by microbial fermentation processes. Biotechnol. Adv. 31(6):877-902.

http://dx.doi.org/10.1016/j.biotechadv.2013.04.002

PMID:23624242.

Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML (2013). Impact of lactosestarvation on the physiology of Lactobacillus casei GCRL163 in the presence orabsence of tween 80. J Proteome Res.12(11):5313-22.

http://dx.doi.org/10.1021/pr400661g

PMID: 24066708

Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O,Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus. Proc. Natl. Acad.Sci. 102(11):3906-12.

http://dx.doi.org/10.1073/pnas.0409188102

PMID: 15671160

Ananta E, Birkeland S, Corcoran B, Fitzgerald G, Hinz S, Klijn A, Mättö J, Mercernier A, Nilsson U, Nyman M, O`Sullivan E, Parche S, Rautonen N, Ross R, Saarela M, Stanton C, Stahl U, Suomalainen T, Vincken J, Virkajärvi ., Voragen F, Wesenfeld J, Wouters R, Knorr D (2004). Processing Effects on the Nutritional Advancement of Probiotics and Prebiotics. Microb. Ecol. Health Dis. 16(2-3): 113-124.

http://dx.doi.org/10.3402/mehd.v16i2-3.7933

Ashraf R, Shah NP (2014). Immune system stimulation by probiotic microorganisms.Crit. Rev. Food Sci.Nutr. 2014;54(7):938-56.

http://dx.doi.org/10.1080/10408398.2011.619671

PMID: 24499072

Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGM, Converti A, Oliveira RPDS (2013). Novel biotechnological applications of bacteriocins: A review. Food Control. 32(1): 134-142.

http://dx.doi.org/10.1016/j.foodcont.2012.11.025

Barrangou R, Altermann E, HutkinsR, Cano R, Klaenhammer TR (2003). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. U S A.100(15):8957-62.

http://dx.doi.org/10.1073/pnas.1332765100

PMID: 12847288

Barrangou R, Lahtinen SJ, Ibrahim F, Ouwehand AC (2012). Genus Lactobacillus. In: Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 77-91.

Baugher JL, Klaenhammer TR (2011). Invited review: Application of omics tools tounderstanding probiotic functionality. J. Dairy Sci. 94(10):4753-65.

http://dx.doi.org/10.3168/jds.2011-4384

PMID: 21943727

Bellanger X, Payot S, Leblond-Bourget N, Guédon G (2014). Conjugative and mobilizablegenomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 38(4):720-60.

http://dx.doi.org/10.1111/1574-6976.12058

PMID: 24372381

Broadbent JR, Larsen RL, Deibel V, Steele JL (2010). Physiological and Transcriptional Response of Lactobacillus casei ATCC 334 to Acid Stress . J. Bacteriol. 192(9):2445-2458.

http://dx.doi.org/10.1128/JB.01618-09

Broadbent JR, Oberg TS, Hughes JE, Ward RE, Brighton C, Welker DL, Steele JL (2014). Influence of polysorbate 80 and cyclopropane fatty acid synthase activity onlactic acid production by Lactobacillus casei ATCC 334 at low pH. J. Ind.Microbiol. Biotechnol. 41(3):545-53.

http://dx.doi.org/10.1007/s10295-013-1391-2

PMID:24370881

Bustos AY, Raya R, de Valdez GF, Taranto MP (2011). Efflux of bile acids inLactobacillus reuteri is mediated by ATP. Biotechnol. Lett. 33(11):2265-9.

http://dx.doi.org/10.1007/s10529-011-0696-3

PMID: 21744273

Caetano BF, de Moura NA, Almeida AP, Dias MC, Sivieri K, Barbisan LF (2016). Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of fructooligosaccharides. Nutrients. 8(7): E436.

http://dx.doi.org/10.3390/nu8070436

PMID: 27455312

Cai Y, Pang H, Kitahara M, Ohkuma M (2012). Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus. Int. J. Syst Evol. Microbiol. 62(Pt 5):1140-4.

http://dx.doi.org/10.1099/ijs.0.031781-0

PMID: 21724957.

Campos IA, Ximenes EA, Carvalho Júnior CH, de Mesquita AR, Silva JB, Maia MB, Franco ES, Medeiros PL, Peixoto CA, da Silva TG (2013). Zymomonas mobilis culture protects against sepsis by modulating the inflammatory response, alleviating bacterial burden and suppressing splenocyte apoptosis. Eur J Pharm Sci. 48(1-2):1-8.

http://dx.doi.org/10.1016/j.ejps.2012.10.011

PMID: 23123332.

Chen C, Zhao G, Chen W, Guo B (2015). Metabolism of fructooligosaccharides in Lactobacillus plantarum ST-III via differential gene transcription and alteration of cell membrane fluidity. Appl. Environ. Microbiol. 81(22):7697-707.

http://dx.doi.org/10.1128/AEM.02426-15

PMID: 26319882;

Christensen JE, Dudley EG, Pederson JA, Steele JL (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 76(1-4):217-46.

PMID: 10532381.

Cockburn DW, Koropatkin NM (2016). Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428(16):3230-52.

http://dx.doi.org/10.1016/j.jmb.2016.06.021

PMID:27393306

Coppola MM, Turnes CG (2004). Probióticos e resposta imune. Cienc. Rural. 34(4): 1297-1303.

http://dx.doi.org/10.1590/S0103-84782004000400056

Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2007). Growth of probiotic

lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology. 153(Pt 1):291-9.

http://dx.doi.org/10.1099/mic.0.28966-0

PMID: 17185558.

Cotter PD, Hill C (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67(3):429-53.

http://dx.doi.org/10.1128/MMBR.67.3.429-453.2003 PMID:12966143

Cotter PD, Hill C, Ross RP (2005). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 3(10):777-88.

PMID: 16205711

http://dx.doi.org/10.1038/nrmicro1273

Cotter PD, Ross RP, Hill C (2013). Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013 Feb;11(2):95-105.

http://dx.doi.org/10.1038/nrmicro2937

PMID: 23268227

De Angelis M, Gobbetti M (2004). Environmental stress responses in Lactobacillus: a review. Proteomics. 4(1):106-22.

http://dx.doi.org/10.1002/pmic.200300497

PMID: 14730676.

De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M (2016). Functional proteomics within the genus Lactobacillus. Proteomics. 16(6):946-62.

http://dx.doi.org/10.1002/pmic.201500117

PMID: 27001126.

De Man JC, Rogosa M, Sharpe ME (1960). A medium for the cultivation of lactobacilli. J. App. Bacteriol. 23(1):130–135.

http://dx.doi.org/10.1111/j.1365-2672.1960.tb00188.x

Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78(2):231-56.

http://dx.doi.org/10.1128/MMBR.00001-14

PMID: 24847021

Drissi F, Buffet S, Raoult D, Merhej V (2015). Common occurrence of antibacterial agents in human intestinal microbiota. Front. Microbiol. 6:441.

http://dx.doi.org/10.3389/fmicb.2015.00441

Drissi F, Raoult D, Merhej V (2016). Metabolic role of lactobacilli in weight modification in humans and animals. Microb. Pathog. pii:S0882-4010(15)30152-2.

http://dx.doi.org/10.1016/j.micpath.2016.03.006

El-Ghaish S, Dalgalarrondo M, Choiset Y, Sitohy M, Ivanova I, Haertlé T, Chobert J (2010). Characterization of a new isolate of Lactobacillus fermentum IFO 3956 from Egyptian Ras cheese with proteolytic activity. Europ. Food Res. Technol. 230: 635–643.

http://dx.doi.org/10.1007/s00217-009-1206-x

El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11(7):497-504.

http://dx.doi.org/10.1038/nrmicro3050

PMID: 23748339.

Fang F, O'Toole PW (2009). Genetic tools for investigating the biology of commensal lactobacilli. Front. Biosci. (Landmark Ed).1(14):3111-27.

PMID: 19273261.

FAO/WHO, 2002. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Selection of Probiotics in Food. London, Ontario, Canada. April 30 and May 1.

Felis GE, Dellaglio F (2007). Taxonomy of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol. 8(2):44-61.

PMID: 17542335

Fozo EM, Kajfasz JK, Quivey RG Jr (2004). Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol. Lett. 238(2):291-5.

http://dx.doi.org/10.1111/j.1574-6968.2004.tb09769.x

PMID: 15358413

Francl AL, Hoeflinger JL, Miller MJ (2012). Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization. Microbiology. 158(Pt 4):944-52.

http://dx.doi.org/10.1099/mic.0.052928-0

PMID: 22282520

Gänzle MG, Follador R (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Front. Microbiol.3:340.

http://dx.doi.org/10.3389/fmicb.2012.00340

PMID: 23055996

Gänzle MG, Vermeulen N, Vogel RF (2007). Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 24(2):128-38.

http://dx.doi.org/10.1016/j.fm.2006.07.006

PMID: 17008155

Gobetti M, De Angelis M, Corsetti A, Di Cagno R (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Tech. 16(1-3): 57-69.

http://dx.doi.org/10.1016/j.tifs.2004.02.013

Goh YJ, Zhang C, Benson AK, Schlegel V, Lee JH, Hutkins RW (2006). Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl. Environ. Microbiol. 72(12):7518-30.

http://dx.doi.org/10.1128/AEM.00877-06

PMID:17028235

Goh YJ, Lee JH, Hutkins RW (2007). Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl. Environ. Microbiol. 73(18):5716-24.

http://dx.doi.org/10.1128/AEM.00805-07

PMID: 17644636

Guerzoni ME, Lanciotti R, Cocconcelli OS (2001). Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 147(Pt 8):2255-64.

http://dx.doi.org/10.1099/00221287-147-8-2255

PMID: 11496002.

Herbel SR, Vahjen W, Wieler LH, Guenther S (2013). Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog. 5(1):27.

http://dx.doi.org/10.1186/1757-4749-5-27

PMID: 24063519

Hickson M (2011). Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Therap. Adv. Gastroenterol. 4(3):185-197. http://dx.doi.org/10.1177/1756283X11399115

Higuchi T, Hayashi H, Abe K (1997). Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179(10):3362-3364.

PMCID: PMC179120

Johnsson T, Nikkila P, Toivonen L, Rosenqvist H, Laakso S (1995). Cellular Fatty Acid profiles of lactobacillus and lactococcus strains in relation to the oleic acid content of the cultivation medium. Appl. Environ. Microbiol. 61(12):4497-9.

PMID: 16535200

Kankaanpää P, Yang B, Kallio H, Isolauri E, Salminen S (2004). Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl. Environ. Microbiol. 70(1):129-36.

http://dx.doi.org/10.1128/AEM.70.1.129–136.2004

PMID: 14711634

Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005). Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29(3):393-409.

http://dx.doi.org/10.1016/j.femsre.2005.04.007 PMID: 15964092.

Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T (2008). Functional genomics of probiotic Lactobacilli. J. Clin. Gastroenterol. 42 Suppl. 3 Pt 2:S160-2.

http://dx.doi.org/10.1097/MCG.0b013e31817da140

PMID: 18685516.

Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996). The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 70(2-4):187-221.

PMID: 8879407.

Lambert JM, Bongers RS, de Vos WM, Kleerebezem M (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol. 74(15):4719-26.

http://dx.doi.org/10.1128/AEM.00137-08

PMID: 18539794

Lebeer S, Vanderleyden J, De Keersmaecker SC (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72(4):728-64.

http://dx.doi.org/10.1128/MMBR.00017-08

PMID: 19052326

Liévin-Le Moal V, Servin AL (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27(2):167-99.

http://dx.doi.org/10.1128/CMR.00080-13

PMID: 24696432

Liu M, Nauta A, Francke C, Siezen RJ (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol. 74(15):4590-600.

http://dx.doi.org/10.1128/AEM.00150-08

PMID: 18539796

Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010). The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 11:36.

http://dx.doi.org/10.1186/1471-2164-11-36

PMID: 20078865

Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A,Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D,Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W,Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H,Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006).

Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U S A. 103(42):15611-6.

http://dx.doi.org/10.1073/pnas.0607117103

PMID: 17030793

Malheiros PS, Sant’Anna V, Todorov SD, Franco BDGM (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a. Braz. J. Microbiol. 46(3):825-34.

http://dx.doi.org/10.1590/S1517-838246320140279

Morelli L, Calleagri ML, Vogensen FK, Von Wright A (2012). Lactic acid bacteria: an introduction. In: Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 17-37.

Neuhaus FC, Baddiley J (2003). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67(4):686-723.

http://dx.doi.org/10.1128/MMBR.67.4.686-723.2003

PMID: 14665680

Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001). Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int. J. Food Microbiol. 68(1-2):135-40.

PMID: 11545213.

O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 152(3):189-205.

http://dx.doi.org/10.1016/j.ijfoodmicro.2011.05.025

Pál K, Szén O, Kiss A, Naár Z (2012). Comparison and evaluation of molecular methods used for identification and discrimination of lactic acid bacteria. J. Sci. Food Agric. 92(9):1931-6.

http://dx.doi.org/10.1002/jsfa.5564

PMID: 22246719

Partanen L, Marttinen N, Alatossava T (2001). Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol. 24(4):500-6.

http://dx.doi.org/10.1078/0723-2020-00078

PMID: 11876356

Pérez RA, González EA, Agrasar AT, Guerra NP (2014). A review on some important factors affecting bacteriocin production by lactococci, lactobacilli and pediococci. Cur.Bioch. Eng. 1 (1): 9– 24.

http://dx.doi.org/10.2174/221271191113019990008

Pessione E (2012). Lactic acid bacteria contribution to gut microbiota complexity:lights and shadows. Front. Cell. Infect. Microbiol. 2:86. http://dx.doi.org/10.3389/fcimb.2012.00086

PMID: 22919677

Pfeiler EA, Klaenhammer TR (2009). Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009 Sep;75(18):6013-6.

http://dx.doi.org/10.1128/AEM.00495-09

PMID: 19633113

Polacheck JW, Tropp BE, Law JH (1966). Biosynthesis of cyclopropane compounds. 8. The conversion of oleate to dihydrosterculate. J. Biol. Chem. 241(14):3362-4.

PMID: 5913126

Preidis GA, Hill C, Guerrant RL, Ramakrishna BS, Tannock GW, Versalovic J (2011). Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology. 140(1):8-14.

http://dx.doi.org/10.1053/j.gastro.2010.11.010

PMID: 21075108

Rossi F, Rizzotti L, Felis GE, Torriani S (2014). Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol. 42:232-43.

http://dx.doi.org/10.1016/j.fm.2014.04.004

PMID: 24929742

Ruiz L, Margolles A, Sánchez B (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4:396.

http://dx.doi.org/10.3389/fmicb.2013.00396

Salvetti E, Torriani S, Felis GE (2012). The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob. Proteins. 4 (4): 217-26.

http://dx.doi.org/10.1007/s12602-012-9117-8

Sanders ME (2003). Probiotics: considerations for human health. Nutr. Rev. 61(3):91-9.

http://dx.doi.org/10.1301/nr.2003.marr.91-99

PMID: 12723641

Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S (2007). Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl. Environ. Microbiol. 73(6):1753-65.

http://dx.doi.org/10.1128/AEM.01151-06

PMID: 17261521

Savijoki K, Ingmer H, Varmanen P (2006). Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71(4):394-406.

http://dx.doi.org/10.1007/s00253-006-0427-1

PMID: 16628446

Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013). The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm. 2013:237921.

http://dx.doi.org/10.1155/2013/237921

PMID: 23576850

Servin AL (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28(4):405-40.

http://dx.doi.org/10.1016/j.femsre.2004.01.003

PMID: 15374659

Sieber R, Collomb M, Aeschlimann A, Jelen P, Eyer H (2004) Impact of microbial cultures on conjugated linoleic acid in dairy products—a review. Int. Dairy J. 14(1): 1-15.

http://dx.doi.org/10.1016/S0958-6946(03)00151-1

Singh Y, Ahmad J, Musarrat J, Ehtesham NZ, Hasnain SE (2013). Emerging importance of holobionts in evolution and in probiotics. Gut Pathog. 22;5(1):12

http://dx.doi.org/10.1186/1757-4749-5-12

PMID: 23694677

Smokvina T, Wels M, Polka J, Chervaux C, Brisse S, Boekhorst J, van Hylckama Vlieg JE, Siezen RJ (2013). Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. Plos One. 19;8(7):e68731.

http://dx.doi.org/10.1371/journal.pone.0068731

PMID: 23894338

Stefanovic E, Fitzgerald G, McAuliffe O (2017). Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol. 61:33-49.

http://dx.doi.org/10.1016/j.fm.2016.08.009

PMID: 27697167.

Sun Z, Harris HM, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P,Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun. 6:8322.

http://dx.doi.org/10.1038/ncomms9322

PMID: 26415554

Sutula J, Coulthwaite L, Verran J (2012). Culture media for differential isolation of Lactobacillus casei Shirota from oral samples. J. Microbiol. Methods. 90(1):65-71.

http://dx.doi.org/10.1016/j.mimet.2012.03.015

PMID: 22484087

Taranto MP, Fernandez Murga ML, Lorca G, de Valdez GF (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95(1):86-91.

http://dx.doi.org/10.1046/j.1365-2672.2003.01962.x

PMID: 12807457

Tomás MS, Bru E, Nader-Macías ME (2003). Comparison of the growth and hydrogen peroxide production by vaginal probiotic lactobacilli under different culture conditions. Am. J. Obstet. Gynecol. 188(1):35-44.

http://dx.doi.org/10.1067/mob.2003.123

PMID: 12548193.

Von Wright A, Axelsson L (2012). Lactic acid bacteria: an introduction. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 1-16.

Wang J, Wu R, Zhang W, Sun Z, Zhao W, Zhang H (2013). Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. J. Dairy Sci. 96(9):5603-24.

http://dx.doi.org/10.3168/jds.2013-6927

PMID:23871367

Widyastuti Y, Rohmatussolihat , Febrisiantosa A (2014). The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci. 5: 435-42.

http://dx.doi.org/10.4236/fns.2014.54051

Yan N (2015). Structural Biology of the Major Facilitator Superfamily Transporters. Annu. Rev. Biophys. 44:257-83.

http://dx.doi.org/10.1146/annurev-biophys-060414-033901

PMID: 26098515

Yusuf M, Hamid THA (2013). Lactic acid bacteria:bacteriocin producer: a mini review. IOSR J. Pharm. 3 (4): 44-50.

http://dx.doi.org/10.9790/3013-034104450

Downloads

Publicado

2017-05-02

Como Citar

Mesquita, A. R. C. de, Silveira, L. P. da M., Cruz Filho, I. J. da, Lima, V. F. de, Silveira Filho, V. da M., Araujo, A. A., Silva, T. L. da, Araújo, K. de F., & Macedo, L. da S. (2017). Metabolism and physiology of Lactobacilli: a review. Journal of Environmental Analysis and Progress, 2(2), 125–136. https://doi.org/10.24221/jeap.2.2.2017.1202.125-136