Metabolism and physiology of Lactobacilli: a review
DOI:
https://doi.org/10.24221/jeap.2.2.2017.1202.125-136Keywords:
Probiotics, lactobacilli, metabolismAbstract
The consumption of probiotic microorganisms in fermented products has been used for centuries. Lactobacillus spp. is one of the main species studied due to its various beneficial effects to health. This species has great ability to adapt to hostile environments, produces antimicrobial substances capable of destroying or inhibiting the growth of pathogenic bacteria and is involved in the digestion of complex carbohydrates not digested by the host. However, there are still some uncertainties and disagreements about the precise biochemical metabolism of lactobacilli. The aim of this article is to review the metabolism and physiological characteristics of lactobacilli for a better understanding of the benefits that these bacteria promote in the host and for the development of strains and probiotic products with higher health benefits.Downloads
References
Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013). Recent advances in lactic acidproduction by microbial fermentation processes. Biotechnol. Adv. 31(6):877-902.
http://dx.doi.org/10.1016/j.biotechadv.2013.04.002
PMID:23624242.
Al-Naseri A, Bowman JP, Wilson R, Nilsson RE, Britz ML (2013). Impact of lactosestarvation on the physiology of Lactobacillus casei GCRL163 in the presence orabsence of tween 80. J Proteome Res.12(11):5313-22.
http://dx.doi.org/10.1021/pr400661g
PMID: 24066708
Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O,Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus. Proc. Natl. Acad.Sci. 102(11):3906-12.
http://dx.doi.org/10.1073/pnas.0409188102
PMID: 15671160
Ananta E, Birkeland S, Corcoran B, Fitzgerald G, Hinz S, Klijn A, Mättö J, Mercernier A, Nilsson U, Nyman M, O`Sullivan E, Parche S, Rautonen N, Ross R, Saarela M, Stanton C, Stahl U, Suomalainen T, Vincken J, Virkajärvi ., Voragen F, Wesenfeld J, Wouters R, Knorr D (2004). Processing Effects on the Nutritional Advancement of Probiotics and Prebiotics. Microb. Ecol. Health Dis. 16(2-3): 113-124.
http://dx.doi.org/10.3402/mehd.v16i2-3.7933
Ashraf R, Shah NP (2014). Immune system stimulation by probiotic microorganisms.Crit. Rev. Food Sci.Nutr. 2014;54(7):938-56.
http://dx.doi.org/10.1080/10408398.2011.619671
PMID: 24499072
Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGM, Converti A, Oliveira RPDS (2013). Novel biotechnological applications of bacteriocins: A review. Food Control. 32(1): 134-142.
http://dx.doi.org/10.1016/j.foodcont.2012.11.025
Barrangou R, Altermann E, HutkinsR, Cano R, Klaenhammer TR (2003). Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. U S A.100(15):8957-62.
http://dx.doi.org/10.1073/pnas.1332765100
PMID: 12847288
Barrangou R, Lahtinen SJ, Ibrahim F, Ouwehand AC (2012). Genus Lactobacillus. In: Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 77-91.
Baugher JL, Klaenhammer TR (2011). Invited review: Application of omics tools tounderstanding probiotic functionality. J. Dairy Sci. 94(10):4753-65.
http://dx.doi.org/10.3168/jds.2011-4384
PMID: 21943727
Bellanger X, Payot S, Leblond-Bourget N, Guédon G (2014). Conjugative and mobilizablegenomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 38(4):720-60.
http://dx.doi.org/10.1111/1574-6976.12058
PMID: 24372381
Broadbent JR, Larsen RL, Deibel V, Steele JL (2010). Physiological and Transcriptional Response of Lactobacillus casei ATCC 334 to Acid Stress . J. Bacteriol. 192(9):2445-2458.
http://dx.doi.org/10.1128/JB.01618-09
Broadbent JR, Oberg TS, Hughes JE, Ward RE, Brighton C, Welker DL, Steele JL (2014). Influence of polysorbate 80 and cyclopropane fatty acid synthase activity onlactic acid production by Lactobacillus casei ATCC 334 at low pH. J. Ind.Microbiol. Biotechnol. 41(3):545-53.
http://dx.doi.org/10.1007/s10295-013-1391-2
PMID:24370881
Bustos AY, Raya R, de Valdez GF, Taranto MP (2011). Efflux of bile acids inLactobacillus reuteri is mediated by ATP. Biotechnol. Lett. 33(11):2265-9.
http://dx.doi.org/10.1007/s10529-011-0696-3
PMID: 21744273
Caetano BF, de Moura NA, Almeida AP, Dias MC, Sivieri K, Barbisan LF (2016). Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of fructooligosaccharides. Nutrients. 8(7): E436.
http://dx.doi.org/10.3390/nu8070436
PMID: 27455312
Cai Y, Pang H, Kitahara M, Ohkuma M (2012). Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus. Int. J. Syst Evol. Microbiol. 62(Pt 5):1140-4.
http://dx.doi.org/10.1099/ijs.0.031781-0
PMID: 21724957.
Campos IA, Ximenes EA, Carvalho Júnior CH, de Mesquita AR, Silva JB, Maia MB, Franco ES, Medeiros PL, Peixoto CA, da Silva TG (2013). Zymomonas mobilis culture protects against sepsis by modulating the inflammatory response, alleviating bacterial burden and suppressing splenocyte apoptosis. Eur J Pharm Sci. 48(1-2):1-8.
http://dx.doi.org/10.1016/j.ejps.2012.10.011
PMID: 23123332.
Chen C, Zhao G, Chen W, Guo B (2015). Metabolism of fructooligosaccharides in Lactobacillus plantarum ST-III via differential gene transcription and alteration of cell membrane fluidity. Appl. Environ. Microbiol. 81(22):7697-707.
http://dx.doi.org/10.1128/AEM.02426-15
PMID: 26319882;
Christensen JE, Dudley EG, Pederson JA, Steele JL (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 76(1-4):217-46.
PMID: 10532381.
Cockburn DW, Koropatkin NM (2016). Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol. 428(16):3230-52.
http://dx.doi.org/10.1016/j.jmb.2016.06.021
PMID:27393306
Coppola MM, Turnes CG (2004). Probióticos e resposta imune. Cienc. Rural. 34(4): 1297-1303.
http://dx.doi.org/10.1590/S0103-84782004000400056
Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2007). Growth of probiotic
lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology. 153(Pt 1):291-9.
http://dx.doi.org/10.1099/mic.0.28966-0
PMID: 17185558.
Cotter PD, Hill C (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67(3):429-53.
http://dx.doi.org/10.1128/MMBR.67.3.429-453.2003 PMID:12966143
Cotter PD, Hill C, Ross RP (2005). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 3(10):777-88.
PMID: 16205711
http://dx.doi.org/10.1038/nrmicro1273
Cotter PD, Ross RP, Hill C (2013). Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 2013 Feb;11(2):95-105.
http://dx.doi.org/10.1038/nrmicro2937
PMID: 23268227
De Angelis M, Gobbetti M (2004). Environmental stress responses in Lactobacillus: a review. Proteomics. 4(1):106-22.
http://dx.doi.org/10.1002/pmic.200300497
PMID: 14730676.
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M (2016). Functional proteomics within the genus Lactobacillus. Proteomics. 16(6):946-62.
http://dx.doi.org/10.1002/pmic.201500117
PMID: 27001126.
De Man JC, Rogosa M, Sharpe ME (1960). A medium for the cultivation of lactobacilli. J. App. Bacteriol. 23(1):130–135.
http://dx.doi.org/10.1111/j.1365-2672.1960.tb00188.x
Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78(2):231-56.
http://dx.doi.org/10.1128/MMBR.00001-14
PMID: 24847021
Drissi F, Buffet S, Raoult D, Merhej V (2015). Common occurrence of antibacterial agents in human intestinal microbiota. Front. Microbiol. 6:441.
http://dx.doi.org/10.3389/fmicb.2015.00441
Drissi F, Raoult D, Merhej V (2016). Metabolic role of lactobacilli in weight modification in humans and animals. Microb. Pathog. pii:S0882-4010(15)30152-2.
http://dx.doi.org/10.1016/j.micpath.2016.03.006
El-Ghaish S, Dalgalarrondo M, Choiset Y, Sitohy M, Ivanova I, Haertlé T, Chobert J (2010). Characterization of a new isolate of Lactobacillus fermentum IFO 3956 from Egyptian Ras cheese with proteolytic activity. Europ. Food Res. Technol. 230: 635–643.
http://dx.doi.org/10.1007/s00217-009-1206-x
El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11(7):497-504.
http://dx.doi.org/10.1038/nrmicro3050
PMID: 23748339.
Fang F, O'Toole PW (2009). Genetic tools for investigating the biology of commensal lactobacilli. Front. Biosci. (Landmark Ed).1(14):3111-27.
PMID: 19273261.
FAO/WHO, 2002. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Selection of Probiotics in Food. London, Ontario, Canada. April 30 and May 1.
Felis GE, Dellaglio F (2007). Taxonomy of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol. 8(2):44-61.
PMID: 17542335
Fozo EM, Kajfasz JK, Quivey RG Jr (2004). Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol. Lett. 238(2):291-5.
http://dx.doi.org/10.1111/j.1574-6968.2004.tb09769.x
PMID: 15358413
Francl AL, Hoeflinger JL, Miller MJ (2012). Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization. Microbiology. 158(Pt 4):944-52.
http://dx.doi.org/10.1099/mic.0.052928-0
PMID: 22282520
Gänzle MG, Follador R (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Front. Microbiol.3:340.
http://dx.doi.org/10.3389/fmicb.2012.00340
PMID: 23055996
Gänzle MG, Vermeulen N, Vogel RF (2007). Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 24(2):128-38.
http://dx.doi.org/10.1016/j.fm.2006.07.006
PMID: 17008155
Gobetti M, De Angelis M, Corsetti A, Di Cagno R (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Tech. 16(1-3): 57-69.
http://dx.doi.org/10.1016/j.tifs.2004.02.013
Goh YJ, Zhang C, Benson AK, Schlegel V, Lee JH, Hutkins RW (2006). Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl. Environ. Microbiol. 72(12):7518-30.
http://dx.doi.org/10.1128/AEM.00877-06
PMID:17028235
Goh YJ, Lee JH, Hutkins RW (2007). Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl. Environ. Microbiol. 73(18):5716-24.
http://dx.doi.org/10.1128/AEM.00805-07
PMID: 17644636
Guerzoni ME, Lanciotti R, Cocconcelli OS (2001). Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology. 147(Pt 8):2255-64.
http://dx.doi.org/10.1099/00221287-147-8-2255
PMID: 11496002.
Herbel SR, Vahjen W, Wieler LH, Guenther S (2013). Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog. 5(1):27.
http://dx.doi.org/10.1186/1757-4749-5-27
PMID: 24063519
Hickson M (2011). Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Therap. Adv. Gastroenterol. 4(3):185-197. http://dx.doi.org/10.1177/1756283X11399115
Higuchi T, Hayashi H, Abe K (1997). Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179(10):3362-3364.
PMCID: PMC179120
Johnsson T, Nikkila P, Toivonen L, Rosenqvist H, Laakso S (1995). Cellular Fatty Acid profiles of lactobacillus and lactococcus strains in relation to the oleic acid content of the cultivation medium. Appl. Environ. Microbiol. 61(12):4497-9.
PMID: 16535200
Kankaanpää P, Yang B, Kallio H, Isolauri E, Salminen S (2004). Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl. Environ. Microbiol. 70(1):129-36.
http://dx.doi.org/10.1128/AEM.70.1.129–136.2004
PMID: 14711634
Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005). Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29(3):393-409.
http://dx.doi.org/10.1016/j.femsre.2005.04.007 PMID: 15964092.
Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T (2008). Functional genomics of probiotic Lactobacilli. J. Clin. Gastroenterol. 42 Suppl. 3 Pt 2:S160-2.
http://dx.doi.org/10.1097/MCG.0b013e31817da140
PMID: 18685516.
Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996). The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 70(2-4):187-221.
PMID: 8879407.
Lambert JM, Bongers RS, de Vos WM, Kleerebezem M (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol. 74(15):4719-26.
http://dx.doi.org/10.1128/AEM.00137-08
PMID: 18539794
Lebeer S, Vanderleyden J, De Keersmaecker SC (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72(4):728-64.
http://dx.doi.org/10.1128/MMBR.00017-08
PMID: 19052326
Liévin-Le Moal V, Servin AL (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27(2):167-99.
http://dx.doi.org/10.1128/CMR.00080-13
PMID: 24696432
Liu M, Nauta A, Francke C, Siezen RJ (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol. 74(15):4590-600.
http://dx.doi.org/10.1128/AEM.00150-08
PMID: 18539796
Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010). The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 11:36.
http://dx.doi.org/10.1186/1471-2164-11-36
PMID: 20078865
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A,Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D,Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W,Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H,Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006).
Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U S A. 103(42):15611-6.
http://dx.doi.org/10.1073/pnas.0607117103
PMID: 17030793
Malheiros PS, Sant’Anna V, Todorov SD, Franco BDGM (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a. Braz. J. Microbiol. 46(3):825-34.
http://dx.doi.org/10.1590/S1517-838246320140279
Morelli L, Calleagri ML, Vogensen FK, Von Wright A (2012). Lactic acid bacteria: an introduction. In: Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 17-37.
Neuhaus FC, Baddiley J (2003). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67(4):686-723.
http://dx.doi.org/10.1128/MMBR.67.4.686-723.2003
PMID: 14665680
Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001). Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int. J. Food Microbiol. 68(1-2):135-40.
PMID: 11545213.
O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 152(3):189-205.
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.05.025
Pál K, Szén O, Kiss A, Naár Z (2012). Comparison and evaluation of molecular methods used for identification and discrimination of lactic acid bacteria. J. Sci. Food Agric. 92(9):1931-6.
http://dx.doi.org/10.1002/jsfa.5564
PMID: 22246719
Partanen L, Marttinen N, Alatossava T (2001). Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol. 24(4):500-6.
http://dx.doi.org/10.1078/0723-2020-00078
PMID: 11876356
Pérez RA, González EA, Agrasar AT, Guerra NP (2014). A review on some important factors affecting bacteriocin production by lactococci, lactobacilli and pediococci. Cur.Bioch. Eng. 1 (1): 9– 24.
http://dx.doi.org/10.2174/221271191113019990008
Pessione E (2012). Lactic acid bacteria contribution to gut microbiota complexity:lights and shadows. Front. Cell. Infect. Microbiol. 2:86. http://dx.doi.org/10.3389/fcimb.2012.00086
PMID: 22919677
Pfeiler EA, Klaenhammer TR (2009). Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009 Sep;75(18):6013-6.
http://dx.doi.org/10.1128/AEM.00495-09
PMID: 19633113
Polacheck JW, Tropp BE, Law JH (1966). Biosynthesis of cyclopropane compounds. 8. The conversion of oleate to dihydrosterculate. J. Biol. Chem. 241(14):3362-4.
PMID: 5913126
Preidis GA, Hill C, Guerrant RL, Ramakrishna BS, Tannock GW, Versalovic J (2011). Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology. 140(1):8-14.
http://dx.doi.org/10.1053/j.gastro.2010.11.010
PMID: 21075108
Rossi F, Rizzotti L, Felis GE, Torriani S (2014). Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives. Food Microbiol. 42:232-43.
http://dx.doi.org/10.1016/j.fm.2014.04.004
PMID: 24929742
Ruiz L, Margolles A, Sánchez B (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 4:396.
http://dx.doi.org/10.3389/fmicb.2013.00396
Salvetti E, Torriani S, Felis GE (2012). The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob. Proteins. 4 (4): 217-26.
http://dx.doi.org/10.1007/s12602-012-9117-8
Sanders ME (2003). Probiotics: considerations for human health. Nutr. Rev. 61(3):91-9.
http://dx.doi.org/10.1301/nr.2003.marr.91-99
PMID: 12723641
Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S (2007). Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl. Environ. Microbiol. 73(6):1753-65.
http://dx.doi.org/10.1128/AEM.01151-06
PMID: 17261521
Savijoki K, Ingmer H, Varmanen P (2006). Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71(4):394-406.
http://dx.doi.org/10.1007/s00253-006-0427-1
PMID: 16628446
Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013). The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm. 2013:237921.
http://dx.doi.org/10.1155/2013/237921
PMID: 23576850
Servin AL (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28(4):405-40.
http://dx.doi.org/10.1016/j.femsre.2004.01.003
PMID: 15374659
Sieber R, Collomb M, Aeschlimann A, Jelen P, Eyer H (2004) Impact of microbial cultures on conjugated linoleic acid in dairy products—a review. Int. Dairy J. 14(1): 1-15.
http://dx.doi.org/10.1016/S0958-6946(03)00151-1
Singh Y, Ahmad J, Musarrat J, Ehtesham NZ, Hasnain SE (2013). Emerging importance of holobionts in evolution and in probiotics. Gut Pathog. 22;5(1):12
http://dx.doi.org/10.1186/1757-4749-5-12
PMID: 23694677
Smokvina T, Wels M, Polka J, Chervaux C, Brisse S, Boekhorst J, van Hylckama Vlieg JE, Siezen RJ (2013). Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. Plos One. 19;8(7):e68731.
http://dx.doi.org/10.1371/journal.pone.0068731
PMID: 23894338
Stefanovic E, Fitzgerald G, McAuliffe O (2017). Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol. 61:33-49.
http://dx.doi.org/10.1016/j.fm.2016.08.009
PMID: 27697167.
Sun Z, Harris HM, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P,Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun. 6:8322.
http://dx.doi.org/10.1038/ncomms9322
PMID: 26415554
Sutula J, Coulthwaite L, Verran J (2012). Culture media for differential isolation of Lactobacillus casei Shirota from oral samples. J. Microbiol. Methods. 90(1):65-71.
http://dx.doi.org/10.1016/j.mimet.2012.03.015
PMID: 22484087
Taranto MP, Fernandez Murga ML, Lorca G, de Valdez GF (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95(1):86-91.
http://dx.doi.org/10.1046/j.1365-2672.2003.01962.x
PMID: 12807457
Tomás MS, Bru E, Nader-Macías ME (2003). Comparison of the growth and hydrogen peroxide production by vaginal probiotic lactobacilli under different culture conditions. Am. J. Obstet. Gynecol. 188(1):35-44.
http://dx.doi.org/10.1067/mob.2003.123
PMID: 12548193.
Von Wright A, Axelsson L (2012). Lactic acid bacteria: an introduction. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A., editors. Lactic acid bacteria – microbiological and functional aspects. CRC Press; USA. pp. 1-16.
Wang J, Wu R, Zhang W, Sun Z, Zhao W, Zhang H (2013). Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. J. Dairy Sci. 96(9):5603-24.
http://dx.doi.org/10.3168/jds.2013-6927
PMID:23871367
Widyastuti Y, Rohmatussolihat , Febrisiantosa A (2014). The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci. 5: 435-42.
http://dx.doi.org/10.4236/fns.2014.54051
Yan N (2015). Structural Biology of the Major Facilitator Superfamily Transporters. Annu. Rev. Biophys. 44:257-83.
http://dx.doi.org/10.1146/annurev-biophys-060414-033901
PMID: 26098515
Yusuf M, Hamid THA (2013). Lactic acid bacteria:bacteriocin producer: a mini review. IOSR J. Pharm. 3 (4): 44-50.
http://dx.doi.org/10.9790/3013-034104450
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Amanda Rafaela Carneiro de Mesquita, Lucas Pacheco da Mota Silveira, Iranildo José da Cruz Filho, Valmir Felix de Lima, Vladimir da Mota Silveira Filho, Ana Albertina Araujo, Tacilene Luzia da Silva, Klewdma de Freitas Araújo, Luciana da Silva Macedo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author