Modeling runoff response to land-use changes using the SWAT model in the Mundaú watershed, Brazil

Authors

  • Carolyne Wanessa Lins de Andrade Farias UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO http://orcid.org/0000-0001-7717-2714
  • Suzana Maria Gico Lima Montenegro
  • Abelardo Antônio de Assunção Montenegro
  • José Romualdo de Sousa Lima
  • Raghavan Srinivasan
  • Charles Allan Jones

DOI:

https://doi.org/10.24221/jeap.5.2.2020.2828.194-206

Keywords:

Land use, Water balance, SWAT model, Mundaú watershed

Abstract

Land-use change has a significant influence on runoff process of any watershed, and the deepening of this theme is essential to assist decision making, within the scope of water resources management. The study was conducted for Mundaú River Basin (MRB) using the Soil and Water Assessment Tool (SWAT) model. The study aims to assess the issue of land-use change and its effect on evapotranspiration, surface runoff, and sediment yield. Input data like land use, topography, weather, and soil data features are required to undertake watershed simulation. Two scenarios of land use were analyzed over 30 years, which were: a regeneration scenario (referring to use in the year 1987) and another scene of degradation (relating to use in the year 2017). Land use maps for 1987 and 2017 were acquired from satellite images. Overall, during the last three decades, 76.4% of forest was lost in the MRB. The grazing land increased in 2017 at a few more than double the area that existed in 1987. Changes in land use, over the years, resulted in an increase of about 37% in the water yield of MRB. Changes have led to increased processes such as surface runoff and sediment yield and in the decrease of evapotranspiration. The spatial and temporal distribution of land use controls the water balance and sediment production in the MRB.

Downloads

Download data is not yet available.

References

Abbas, T.; Nabi, G.; Boota, M. W.; Hussain, F.; Faisal, M.; Ahsan, H. 2015. Impacts of landuse changes on runoff generation in Simly watershed. Sci Int, 27, 4, 4083-4089.

Abbaspour, K. C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333, 413-430. http://doi.org/10.1016/j.jhydrol.2006.09.014.

Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 6, 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Anaba, L. A.; Banadda, N.; Kiggundu, N.; Wanyama, J.; Engel, B.; Moriasi, D. 2017. Application of SWAT to assess the effects of land use change in the Murchison Bay Catchment in Uganda. Computational Water, Energy, and Environmental Engineering, 6, 24-40. http://doi.org/10.4236/cweee.2017.61003.

Andrade, C. W. L. 2018. Hydrological modeling and scenarios of land use and climate changes in a representative basin, northeastern Brazil. Tese (Universidade Federal Rural de Pernambuco). 161p.

APAC, Agência Pernambucana de Águas e Clima (Pernambuco State Agency for Water and Climate) (www.apac.pe.gov.br). Accessed on: July 2015.

Arnold, J. G.; Srinivasan, R.; Muttiah, R. S.; Williams, J. R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34, 73-89. http://dx.doi.org/10.1111/j.1752-1688.1998.

Blainski, E.; Porras, E. A. A.; Garbossa, L. H. P.; Pinheiro, A. 2017. Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. Brazilian Journal of Water Resources, 22, 33, 1-12. http://dx.doi.org/10.1590/2318-0331.011716110.

Booth, D. B. 1991. Urbanization and the natural drainage system–impacts, solutions, and prognoses. Northwest Environ. J., 7, 1, 93-117.

Bressiani, D. A.; Gassman, P. W.; Fernandes, J. G.; Garbossa, L. H. P.; Srinivasan, R.; Bonumá, N. B.; Mendiondo, E. M. 2015. Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biological Engineering, 8, 9-35. http://dx.doi.org/10.3965/j.ijabe.20150803.1765.

Bruijnzeel, L. A. 1996. Predicting the hydrological impacts of land cover transformation in the humid tropics: the need for integrated research. In: Gash, J. H. C.; Nobre, C. A.; Roberts, J. M.; Victoria, R. L. 1996. Amazonian deforestation and climate. Chichester, England: J. Wiley, Cap.2.

Coelho, V. H. R.; Montenegro, S. M. G. L.; Almeida, C. N.; Lima, E. R. V.; Ribeiro Neto, A.; Moura, G. S. S. 2014. Dinâmica do uso e ocupação do solo em uma bacia hidrográfica do semiárido brasileiro. R. Bras. Eng. Agríc. Ambiental, 18, 1, 64-72. http://dx.doi.org/10.1590/S1415-43662014000100009.

FAO. 2010. Global Forest Resources Assessment, Main report. Food and Agriculture Organization of the United Nations, FAO, Rome.

Fontes Júnior, R.; Montenegro, A. 2019. Impact of land use change on the water balance in a representative watershed in the semiarid of the state of Pernambuco using the SWAT model. Engenharia Agrícola, 39, 1, 110-117. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n1p110-117/2019.

Halecki, W.; Kruk, E.; Ryczeq, M. 2018. Loss of topsoil and soil erosion by water in agricultural areas: A multicriteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy, 73, 363-372. https://doi.org/10.1016/j.landusepol.2018.01.041.

Khare, D.; Patra D.; Mondal, A.; Kundu, S. 2017. Impact of landuse/land cover change on runoff in the catchment of a hydro power project. Appl Water Sci, 7, 2, 23–35. https://doi.org/10.1007/s13201-015-0292-0.

Kundu, S.; Khare, D.; Mondal, A. 2017. Individual and combined impacts of future climate and land use changes on the water balance. Ecological Engineering, 105, 42-57. https://doi.org/10.1016/j.ecoleng.2017.04.061.

Leal, I. R.; Silva, J. M. C.; Tabarelli, M.; Lacher Junior, T. E. 2005. Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conservation Biology, 19, 701-706. http://dx.doi.org/10.1111/j.1523-1739.2005.00703.x.

Lima, W. P.; Laprovitera, R.; Ferraz, S. F. B.; Rodrigues, C. B.; Silva, M. M. 2012. Forest and water consumption: A strategy for hydrosolidarity. International Journal of Forestry Research, 2012, 1-8. http://dx.doi.org/10.1155/2012/908465.

Marhaento, H.; Booij, M. J.; Rientjes, T. H. M.; Hoekstra, A. Y. 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31, 2029-2040. http://dx.doi.org/10.1002/hyp.11167.

Marks, R.; Müller, M. J.; Leser, H.; Klink, H. J. 1989. Anleitung zur Bewertung des Leistungsvermögens des Landschaftshaushaltes (BA LVL) Zentralausschuß für deutsche Landeskunde. 229p. Forschungen zur Deutschen Landeskunde.

Molina-Navarro, E.; Andersen, H. E.; Nielsen, A.; Thodsen, H.; Trolle, D. 2018. Quantifying the combined effects of land use and climate changes on stream flow and nutrient loads: A modelling approach in the Odense Fjord catchment (Denmark). Science of the Total Environment, 621, 253-264. https://doi.org/10.1016/j.scitotenv.2017.11.251.

Munoz-Villers, L. E.; McDonnell, J. J. 2013. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrological Earth System Science, 17, 3543-3560. https://doi.org/10.5194/hess-17-3543-2013.

Neitsch, S. L.; Arnold, J. G.; Kiniry, J. R.; Williams, J. R. 2005. Soil and water assessment tool: Theoretical documentation version 2005. Temple: Blackland Research Center, 541p.

Pereira, D. R.; Martinez, M. A.; Silva, D. D.; Pruski, F. F. 2016. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT Model Part II: Simulation of hydrological variables and soil use scenarios. Journal of Hydrology: Regional Studies, 5, 149-163. http://dx.doi.org/10.1016/j.ejrh.2015.11.008.

Pereira, D. R.; Mello, C. R.; Silva, A. M.; Yanagi, S. N. M. 2010. Evapotranspiration and estimation of aerodynamic and stomatal conductance in a fragment of Atlantic Forest in Mantiqueira range region, MG. Revista Cerne, 16, 32-40. http://dx.doi.org/10.1590/S0104-77602010000100004.

Rodrigues, E. L.; Elmiro, M. A. T.; Braga, F. A.; Jacobi, C. M.; Rossi, R. D. 2015. Impact of changes in land use in the flow of the Pará River Basin, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, 19, 1, 70-76. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n1p70-76.

Sajikumar, N.; Remya, R. S. 2015. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag., 161, 460-468. https://doi.org/10.1016/j.jenvman.2014.12.041.

Silva, C. A. I. 2014. Análise de aplicabilidade da interface do modelo hidrológico SWAT-SIG no estudo da produção de sedimentos em uma bacia no Nordeste do Brasil. Dissertação (Universidade Federal de Alagoas). 53p.

Silva, L. F. 2002. 500 anos de uso do solo no Brasil. Editora Editus, Ilhéus, Ba. 2002. 605p.

Tucci, C. E. M.; Clarke, R. T. 1997. Impacto das mudanças de cobertura vegetal no escoamento: Revisão. Revista Brasileira de Recursos Hídricos, 2, 135-152.

Tufa, D. F.; Abbulu, Y.; Srinivasarao, G. V. R. 2014. Watershed hydrological response to changes in land use/land covers patterns of river basin: A review. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 4, 157-170.

Werneck, F. P. 2011. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quaternary Science Reviews, 30, 1630-1648. https://dx.doi.org/10.1016/j.quascirev.2011.03.009.

Worku, T.; Khare, D.; Tripathi, S. K. 2017. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environ. Earth Sci., 76, 550, 1-14. http://dx.doi.org/10.1007/s12665-017-6883-3.

Yan, B.; Fang, N. F.; Zhang, P. C.; Shi, Z. H. 2013. Impacts of land use change on watershed streamflow and sediment yield: an assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26-37. https://doi.org/10.1016/j.jhydrol.2013.01.008

Zhang, L.; Liu, Y.; Wu, L.; Cai, D.; Ma, X. 2016. Impact of land-use scenarios on monthly runoff modeled by SWAT. Fresenius Environmental Bulletin, 25, 9, 3595-3605.

Downloads

Published

2020-05-29

How to Cite

Farias, C. W. L. de A., Montenegro, S. M. G. L., Montenegro, A. A. de A., Lima, J. R. de S., Srinivasan, R., & Jones, C. A. (2020). Modeling runoff response to land-use changes using the SWAT model in the Mundaú watershed, Brazil. Journal of Environmental Analysis and Progress, 5(2), 194–206. https://doi.org/10.24221/jeap.5.2.2020.2828.194-206