Soil aquifer treatment of polishing pond effluent as an alternative to agricultural reuse

Authors

  • Wilza da Silva Lopes Instituto Nacional do Semiárido
  • Antonielly dos Santos Barbosa Universidade Federal de Campina Grande
  • Gleydson Kleyton Moura Nery Instituto Nacional do Semiárido
  • Janiele França Nery Instituto Nacional do Semiárido

DOI:

https://doi.org/10.24221/jeap.7.4.2022.4685.227-234

Keywords:

Infiltration columns, Irrigation, Nutrients, Preservation

Abstract

The treatment of effluents for agricultural reuse is a sustainable alternative, as it provides a perennial source of water and nutrients, in addition to promoting the qualitative and quantitative protection of water resources. The soil aquifer treatment (TSA) in basins or infiltration channels allows the treatment through the passage of effluent in the soil, with removal of organic matter, pathogens and other compounds harmful to crops. Therefore, the objective of this work was to evaluate the treatment of effluents from polishing ponds in TSA systems, as a way to improve the quality of the effluent to be used in irrigation. For this, an infiltration column filled with sand, previously characterized, with a volume of 7.85 L and a height of the filter medium of 80 cm was used. Daily, the effluent from the lagoon was evenly distributed in the upper part of the infiltration column, and the filtered effluent collected in the lower part. As a result, organic matter removals of 61% and 72% were obtained, for BOD and COD, respectively, a 53% reduction of suspended material, nutrient conservation and sanitary quality meeting the criteria established by WHO 2006. The TSA system showed improvements in the quality of the effluent from the lake, making it a viable and safe alternative for water reuse in agricultural practices.

Downloads

Download data is not yet available.

Author Biographies

Wilza da Silva Lopes, Instituto Nacional do Semiárido

Sanitary and Environmental Engineer (UEPB), Master in Civil and Environmental Engineering (UFCG), Doctor in Environmental Engineering (UEPB) and Researcher at the National Institute of the Semi-Arid (INSA)

Antonielly dos Santos Barbosa, Universidade Federal de Campina Grande

Química Industrial (UEPB), Mestra em Engenharia Química (UFCG)e Doutora em Engenharia Química (UFCG)

Gleydson Kleyton Moura Nery, Instituto Nacional do Semiárido

Biólogo (UEPB), Mestre em Ecologia e Conservação (UEPB) e Pesquisadora do Núcleo de Recursos Hídricos (INSA)

Janiele França Nery, Instituto Nacional do Semiárido

Bióloga (UEPB), Mestre em Desenvolvimento e Meio Ambiente (UFPB), Doutora em Ciências Ambientais (UEM) e Pesquisadora do Núcleo de Recursos Hídricos (INSA)

References

ABNT. 1993. Técnicas, Análise Granulométrico-Rochas e Solos. NBR 6502.

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. 23rd Edition: Washington. 1496p.

Barbosa, C. M. S.; Mattos, A. 2008. Conceitos e diretrizes para recarga artificial de aquíferos. Anais do XV Congresso Brasileiro de Águas Subterrâneas, Natal-RN.

Bouwer, H. 2002. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10, 121-142.

COEMA nº 2/2017. Dispõe sobre padrões e condições para lançamento de efluentes líquidos gerados por fontes poluidoras, revoga as Portarias SEMACE nº 154, de 22 de julho de 2002 e nº 111, de 05 de abril de 2011, e altera a Portaria SEMACE nº 151, de 25 de novembro de 2002.

CETESB. 2010. Critérios e procedimentos para aplicação no solo agrícola. Norma Técnica P4-002, 1ª Edição, 20p.

Coutinho, J. V.; Almeida, C. N.; Silva, E. B.; Stefan, C.; Athayde Júnior, G. B.; Gadelha, C. L. M.; Walter, F. 2018. Managed aquifer recharge: study of undisturbed soil column tests on the infiltration and treatment capacity using effluent of wastewater stabilization pond. Revista Brasileira de Recursos Hídricos, 23, 50, 1-9.

Dillon, P. 2005. Future management of aquifer recharge. Hydrogeology Journal, 13, 313-316.

Faria, D.; Oliveira, A.; Baeza, J. A.; Miera, B. S.; Calvo, L.; Gilarranz, M. A.; Naval, L. 2020. Sewage treatment using Aqueous Phase Reforming for reuse purpose. Journal of Water Process Engineering, 37, 101413.

Fox, J.; Weisberg, S. 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. Available at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

Hohne, D.; Esterhuyse, C.; Fourie, F.; Gericke, H.; Esterhuyse, S. 2021. Enhancing groundwater recharge in the main Karoo, South Africa during periods of drought through managed aquifer recharge. Journal of African Earth Sciences, 176, 104007.

Jokela, P.; Eskola, T.; Heinonen, T.; Tanttu, U.; Tyrväinen, J.; Artimo, A. 2017. Raw Water Quality and Pretreatment in Managed Aquifer Recharge for Drinking Water Production in Finland. Water, 9, 2, 1-16.

Maeng, S. K.; Sharma, S. K.; Lekkerkerker-Teunissen, K.; Amy, G. L. 2011. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review. Water Res., 45, 10, 3015-3033.

Lim, M. -H.; Snyder, S. A.; Sedlak, D. L. 2008. Use of biodegradable dissolved organic carbon (BDOC) to assess the potential for transformation of wastewater-derived contaminants in surface waters. Water Research, 42, 12, 2943-2952.

Mienis, O.; Arye, G. 2018. Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system. Water Research, 134, 192-199.

Nadav, I.; Tarchitzky, J.; Chen, Y. 2017. Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). Journal of Plant Nutrition and Soil Science, 180, 142-152.

Nguyen, A. C.; Nguyen, D. D.; Tran, Q. B.; Nguyen, T. T. H; Tran, T. K. A.; Tran, T. C. P.; Nguyen, T. H. G.; Tran, T. N. T.; La, D. D.; Chang, S. W.; Balasubramani, R.; Chung, W. J.; Yoon, Y. S.; Nguyen, V. K. 2020. Two-step system consisting of novel vertical flow and free water surface constructed wetland for effective sewage treatment and reuse. Bioresource Technology, 306, 1-8.

Page, D.; Bekele, E.; Vanderzalm, J.; Sidhu, J. 2018. Managed Aquifer Recharge (MAR) in Sustainable Urban Water Management. Water, 10, 3, 1-16.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

Ringleb, J.; Sallwey, J.; Stefan, C. 2016. Assessment of Managed Aquifer Recharge through Modeling-A Review. Water, 8, 1-31.

Silva, S. A. 2001. Manual de análises físico-químicas de águas de abastecimento e residuárias/ Salomão Anselmo Silva. Rui de Oliveira. Campina Grande, Paraíba. 266p.

USEPA. United States Environmental Protection Agency. 2012. Guidelines for water reuse. 643p.

Von Sperling, M. 2002 Lagoas de estabilização. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais.

WHO. World Health Organization. 2006. WHO Guidelines for the safe use of wastewater, excreta and greywater. Volume 2: Wastewater use in agriculture. Geneva. 196p.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 268p.

Wickham, H.; François, R.; Henry, L.; Müller, K. 2021. dplyr: A Grammar of Data Manipulation. R package version 1.0.6. Available at: https://CRAN.R-project.org/package=dplyr

Zhang, H.; Xu, Y.; Kanyerere, T. 2020. A review of the managed aquifer recharge: Historical development, current situation and perspectives. Physics and Chemistry of the Earth, 118-119, 102887.

Published

2022-12-21

How to Cite

da Silva Lopes, W., dos Santos Barbosa, A. ., Nery, G. K. M. ., & França Nery, J. . (2022). Soil aquifer treatment of polishing pond effluent as an alternative to agricultural reuse. Journal of Environmental Analysis and Progress, 7(4), 227–234. https://doi.org/10.24221/jeap.7.4.2022.4685.227-234