Effect of vegetation fragmentation on bee diversity: comparing response patterns in Euglossini and Meliponini

Authors

  • Priscila Santos Gonçalves
  • Érica Vanessa Durães Freitas
  • Sabrina Celie Oliveira Silva
  • Isaque Clementino Bezerra
  • Walter Santos de Araújo Universidade Estadual de Montes Claros

DOI:

https://doi.org/10.24221/jeap.9.3.2024.6005.169-178

Keywords:

bees, cerrado, edge effect, transmission line

Abstract

Bees are important floral visitors that need well-structured environments with a variety of resources for foraging. The bee fauna has been suffering species decline due to anthropic changes in natural habitats. The aim of this study is to assess whether the opening of natural vegetation affects bee communities in the Cerrado of southeastern Brazil. Our hypothesis is that the opening of the vegetation generates an edge effect that affects differently the bee communities of the Euglossini and Meliponini tribes. We expect that the occurrence of Meliponini bees will be higher in areas close to the impacted edge, while Euglossini bees will be more frequent in areas further away from the edge. The study was carried out in the central region of the state of Minas Gerais, in the municipalities of Ouro Preto, Itabirito, and Sabará. In each location, an area opened by the right-of-way of a transmission line was sampled, where five transects were established at 0 m, 50 m, and 100 m from the open area. We recorded 642 individuals from 38 bee species. The most abundant species were Trigona hyalinata (N = 230), Trigona spinipes (N = 108), and Tetragonisca angustula (N = 86). Bee richness and abundance were significantly higher in the transects of open areas (0m), a pattern strongly affected by Meliponini bees. However, analyzing only Euglossini, we found greater abundance in the transect farthest from the open area. Our results corroborate the hypothesis that vegetation opening affects Euglossini and Meliponini bees differently.

Downloads

Download data is not yet available.

References

Alvarenga, A. S.; Silveira, F. A.; Santos Júnior, J. E.; Novais, S. M. A.; Quesada, M.; Neves, F. S. 2020. Vegetation composition and structure determine wild bee communities in a tropical dry forest. Journal of Insect Conservation, 24, 487-498. https://doi.org/10.1007/s10841-020-00231-5

Bell, C.; Tronstad, L.; Hotaling, S. 2023. Tailoring your bee sampling protocol: Comparing three methods reveals the best approaches to capturing bees. Agricultural and Forest Entomology, 2023, 1-12. https://doi.org/10.1111/afe.12569

Bembé, B. 2004. Functional morphology in male euglossine bees and their ability to spray fragrances (Hymenoptera, Apidae, Euglossini). Apidologie, 35, 283-291. https://doi.org/10.1051/apido:2004013

Brown, J. C.; Albrecht, C. 2001. The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia, Brazil. Journal of Biogeography, 28, 623-634. https://www.jstor.org/stable/827515

Burkle, L.; Marlin, J. C.; Knight, T. M. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611-1615. https://www.science.org/doi/10.1126/science.1232728

Búrquez, A. 1997. Distributional limits of Euglossinae and Meliponinae bees (Hymenoptera, Apidae). Annual Review of Ecology, Evolution, and Systematics, 13, 337-394.

Campbell, J. W.; Abbate, A.; West, N. M.; Straub, L.; Williams, G. R. 2023. Comparing three collection methods for pollinating insects within electric transmission rights-of-ways. Journal of Insect Conservation, 27, 377-387. https://doi.org/10.1007/s10841-023-00460-4

Campos, O. L. 2010. Estudo de caso sobre impactos ambientais de linhas de transmissão na Região Amazônica. Banco Nacional do Desenvolvimento – Meio Ambiente. BNDES Setorial, 32, 231-266. http://web.bndes.gov.br/bib/jspui/handle/1408/2923

Cane, J. H.; Minckley R. L.; Kervin L. J.; Roulston T. H.; Williams. N. M. 2006. Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecological Applications, 16, 632-644. https://doi.org/10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2

Collado, M. A.; Sol, D.; Bartomeus, I. 2019. Bees use anthropogenic habitats despite strong natural habitat preferences. Diversity and Distributions, 25, 924-935. https://doi.org/10.1111/ddi.12899

Coope, G. R. 1995. Insect faunas in ice age environments: why so little extinction? In: Lawton, J. H.; May, R. M. [eds.]. Extinction rates, Oxford, UK, Oxford Univ. Press. pp. 55-74.

Dressler, R L. 1982. Biologia das abelhas das orquídeas (Euglossini). Revisão Anual de Ecologia e Sistemática, 13, 373-394. http://dx.doi.org/10.1146/annurev.es.13.110182.002105.

Endress, P. K. 1994. Diversity and evolutionary biology of tropical flowers. New York: Cambridge University Press, 511p.

Ewers, R. M.; Didham R. K. 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-42. http://dx.doi.org/10.1017/S146479310500

Klaus, F.; Ayasse, M.; Classen, A.; Dauber, J.; Diekötter, T.; Everaars, J.; Fornoff, F.; Greil, H.; Hendriksma, H. P.; Jütte, T.; Klein, A. M.; Krahner, A.; Leonhardt, S. D.; Lüken, D. R.; Paxton, R. J.; Schmid-Egger, C.; Steffan-Dewenter, I.; Thiele, J.; Tscharntke, T.; Erler, S.; Pistorius, J. 2024. Improving wild bee monitoring, sampling methods, and conservation. Basic and Applied Ecology, 75, 2-11. https://doi.org/10.1016/j.baae.2024.01.003

Knut, F. L. V. D. 1971. Principles of pollination ecology. Oxford: Pergamon Press. 291p.

Fischer, J.; Lindenmayer, D. B. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265-280. https://doi.org/10.1111/j.1466-8238.2007.00287.x

Frankie, G. W.; Newstrom L. E.; Vinson S. B.; Barthell, J. F. 1993. Nesting-habitat preferences of selected Centris bees species in Costa Rican rainforest. Biotropica, 25, 322-333. https://doi.org/10.2307/2388790

Garibaldi, L. A.; Carvalheiro, L. G.; Leonhardt, S. D.; Aizen, M. A.; Blaauw, B. R.; Isaacs, R.; Kuhlmann, M.; Kleijn, D.; Klein, A. M.; Kremen, C.; Morandin, L.; Scheper, J.; Winfree, R. 2014. From research to action: practices to enhance crop yield through wild pollinators. Frontiers in Ecology and the Environment, 12, 439-447. https://doi.org/10.1890/130330

Garófalo, C. A.; Rozen-Jr., J. G. 2001. Parasitic Behavior of Exaerete smaragdina with descriptions of its mature oocyte and larval instars (Hymenoptera: Apidae: Euglossini). American Museum Novitates, 3349, 1-26. https://doi.org/10.1206/0003-0082(2001)349<0001:PBOESW>2.0.CO;2

Garófalo, C. A.; Camillo, E.; Serrano, J. C.; Rebêlo, J. M. M. 1993. Utilização de ninhos-armadilha por espécies de Euglossini (Hymenoptera: Apidae). Revista Brasileira de Biologia, 53, 177-187.

Gazola, A. L.; Garófalo, C. A.; 2009. Abelhas nidificantes (Hymenoptera: Apoidea) em fragmentos florestais do Estado de São Paulo. Brasil. Genetics and Molecular Research, 8, 607-622.

Gonçalves, P. S.; Araújo, W. S. 2021. Diversity of Eusocial Bees in Natural and Anthropized Areas of a Tropical Dry Forest in the Parque da Sapucaia (Montes Claros, Minas Gerais, Brazil). Sociobiology, 68, e5305. https://doi.org/10.13102/sociobiologia.v68i1.5305

Gonçalves, R. B.; Faria, L. R. R. 2021. In euglossine we trust as ecological indicators: a reply to Añino et al. 2019. Sociobiology, 68, 1-8. https://doi.org/10.13102/sociobiologia.v68i1.4610

Janzen, D. H.; Devries, P. J.; Higgins M. L.; Kimsey, L. S. 1982. Seasonal and site variation in Costa Rican euglossine bees at chemical baits in lowland deciduous and evergreen forests. Ecology, 63, 66-74. https://doi.org/10.2307/1937032

Lipinski, Z. 2006. How far should bees be located from the high voltage power lines? Journal of Apicultural Research, 45, 240-242.

Michener, C. D. 2007. The bees of the world. 2. ed. Baltimore: The Johns Hopkins University Press. 922p.

Morato, E. F. 1994. Abundância e riqueza de machos de Euglossini (Hymenoptera: Apidae) em mata de terra firme e áreas de derrubada, nas vizinhanças de Manaus (Brasil). Boletim do Museu Paraense Emílio Goeldi, 10, 95-105.

Muth, F.; Cooper T. R.; Bonilla, R. F.; Leonard, A. S. 2017. A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9, 78-87. https://doi.org/10.1111/2041-210X.12852

Nemésio, A.; Morato, E. F. 2006. The orchid-bee fauna (Hymenoptera: Apidae) of Acre state (northwestern Brazil) and a re-evaluation of euglossine bait-trapping. Lundiana, 7, 59-64.

Nemésio, A.; Silveira, F. A. 2010. Forest fragments with larger central areas better support the various bee faunas (Hymenoptera: Apidae: Euglossina). Neotropical Entomology, 39, 555-561. doi: https://doi.org/10.1590/S1519-566X2010000400014

Ollerton, J. 2017. Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution and Systematics, 48, 352–376. https://doi.org/10.1146/annurev-ecolsys-110316-022919

Oliveira, M. L.; Nogueira, D. S. 2023. Apidae in Catálogo Taxonômico da Fauna do Brasil. PNUD. Disponível em: http://fauna.jbrj.gov.br/fauna/faunadobrasil/4215. Acesso em: 23 jun. 2023

Olynyk, M.; Westwood, A. R.; Koper, N. 2021. Effects of natural habitat loss and edge effects on wild bees and pollination services in remnant prairies. Environmental Entomology, 50, 732-743. https://doi.org/10.1093/ee/nvaa186

Potts, S. G.; Biesmeijer, J. C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. E. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353. https://doi.org/10.1016/j.tree.2010.01.007

Powell, A. H.; Powell, G. N. N. 1987. Population dynamics of male Euglossine bees in Amazonian forest fragments. Biotropica, 19, 176-179. https://doi.org/10.2307/2388742

R Core Team. 2023. R: a language and environment for statistical computing, v. 4.2.2. Vienna, Austria: R Foundation for Statistical Computing. Disponível em: www.R-project.org. Acesso em: 20 jun. 2023.

Rebêlo, J. M. M.; Moure, J. S. 1995. As espécies de Euglossa Latreille do Nordeste de São Paulo (Apidae, Euglossinae). Revista Brasileira de Zoologia, 51, 787-799.

Rodríguez-Rodríguez, M. C.; Jordano, P.; Valido, A. 2013. Quantity and quality components of effectiveness in insular pollinator assemblages. Oecologia, 173, 179-190. https://doi.org/10.1007/s00442-013-2606-y

Russo, L.; Stout, H.; Roberts, D.; Ross, B. D.; Mahan, C. G. 2021. Powerline right-of-way management and flower-visiting insects: how vegetation management can promote pollinator diversity. PloS One, 16, (1), e0245146. https://doi.org/10.1371/journal.pone.0245146

Shepherd, S.; Lima, M. A. P.; Oliveira, E. E.; Sharkh, S. M.; Jackson, C. W. Newland, P. L. 2018. Extremely Low Frequency Electromagnetic Fields impair the Cognitive and Motor Abilities of Honey Bees. Scientific Reports, 8, 7932. https://doi.org/10.1038/s41598-018-26185-y

Silveira, F. A.; Melo, G. A.; Almeida, E. A. 2002. Abelhas brasileiras. Sistemática e Identificação. Fundação Araucária, Belo Horizonte, 253p.

Stout, J. C. 2014. Anthropogenic impacts on pollination networks and plant mating systems. Functional Ecology, 28, 1-2. https://doi.org/10.1111/1365-2435.12220

Tylianakis, J. M. 2013. The Global Plight of Pollinators. Science, 339, 1532-1533. https://www.science.org/doi/full/10.1126/science.1235464

Waser, N. M. 2006. Specialization and generalization in plant-pollinator interactions: a historical perspective. In: Waser, N. M.; Ollerton, J. (eds.). Plant-pollinator interactions – from specialization to generalization The University of Chicago Press, pp. 3-17.

Williams, N. M.; Crone, E. E.; Roulston, T. H.; Minckley, R. L.; Packer, L.; Potts, S. G. 2010. Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143, 2280-2291. https://doi.org/10.1016/j.biocon.2010.03.024

Winfree, R.; Bartomeus, I.; Cariveau, D. P. 2011. Native pollinators in anthropogenic habitats. Annual Review of Ecology, Evolution, and Systematics, 42, 1-22. https://doi.org/10.1111/j.1461-0248.2007.01110.x.

Winfree, R.; Williams, N. M.; Dushoff, J.; Kremen, C. 2007. Native bees provide insurance against ongoing honey bee losses. Ecology Letters, 10, 1105-1113. https://doi.org/10.1111/j.1461-0248.2007.01110.x

Wu, P.; Axmacher, J. C.; Song, X.; Zhang, X.; Xu, H.; Chen, C.; Liu, Y. 2018. Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 18, 1-9. https://doi.org/10.1093/jisesa/iey065

Zanette, L. R. S.; Martins, R.P.; Ribeiro, S. P.; 2005. Effects of urbanization on Neotropical wasp and bee assemblages in a Brazilian metropolis. Landscape and Urban Planning, 71, 105-121. https://doi.org/10.1016/j.landurbplan.2004.02.003

Zurbuchen, A.; Landert, L.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. 2010. Maximum foraging distances in solitary bees: only few individuals have the capability to cover long foraging distances. Biological Conservation, 143, 669-676. https://doi.org/10.1016/j.biocon.2009.12.003

Published

2024-07-25

How to Cite

Gonçalves, P. S., Freitas, Érica V. D., Silva, S. C. O., Bezerra, I. C., & Araújo, W. S. de. (2024). Effect of vegetation fragmentation on bee diversity: comparing response patterns in Euglossini and Meliponini. Journal of Environmental Analysis and Progress, 9(3), 169–178. https://doi.org/10.24221/jeap.9.3.2024.6005.169-178