Desulfurization of coal pyrite tailings with ozone

Authors

DOI:

https://doi.org/10.24221/jeap.9.3.2024.6078.188-195

Keywords:

Oxidation, Sulfates, Ozonation

Abstract

Mining is an important sector of the economy, and in the southern region of Brazil, coal mining stands out. This activity generates waste with a high pyritic content, which causes environmental problems such as acid mine drainage (AMD). Therefore, studies that aim to beneficiate or treat this waste are of high relevance. In this study, an alternative for desulfurizing pyritic waste using ozone was investigated. Ozone treatment of mining tailings suspension was evaluated as a new strategy for sulfur removal. Particle size analysis, sulfate content, ferrous ion concentration (and total iron), pH, Eh, conductivity, and X-ray fluorescence were performed. Furthermore, a kinetic analysis of ozone consumption was established. The behavior of sulfate and hydrogen ion concentrations indicates that sulfuric acid is the main reaction product, and conductivity suggests that ion release is continuous over the ozonation time. A reaction kinetics with ??1.2 was found for ozone depletion, which aids in predicting the dosage to be applied on a larger scale. This study represents a contribution to the search for alternatives for treating pyritic waste and contributes to the understanding of the reaction rate of ozone consumption in this type of reaction.

Downloads

Download data is not yet available.

References

Akcil, A.; Koldas, S. 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14, 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006

Alakangas, L.; Andersson, E.; Mueller, S. 2013. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environmental Science and Pollution Research, 20, 7907-7916. https://doi.org/10.1007/s11356-013-1838-z

Amaral Filho, J. R.; Schneider, I. A. H.; Brum, I. A. S. de.; Sampaio, C. H.; Miltzarek, G.; Schneider, C. 2013. Caracterização de um depósito de rejeitos para o gerenciamento integrado dos resíduos de mineração na região carbonífera de Santa Catarina, Brasil. Revista Escola de Minas, 66, 347-353. https://doi.org/10.1590/S0370-44672013000300012

Ambrós, W. M. 2020. Jigging: A Review of Fundamentals and Future Directions. Minerals, 10, 998. https://doi.org/10.3390/min10110998

Anawar, H. M. 2015. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. Journal of Environmental Management, 158, 111-121. https://doi.org/https://doi.org/10.1016/j.jenvman.2015.04.045

Bessho, M.; Wajima, T.; Ida, T.; Nishiyama, T. 2011. Experimental study on prevention of acid mine drainage by silica coating of pyrite waste rocks with amorphous silica solution. Environmental Earth Sciences, 64, 311-318. https://doi.org/10.1007/s12665-010-0848-0

Chandra, A. P.; Gerson, A. R. 2010. Surface Science Reports The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports, 65, 293-315. https://doi.org/10.1016/j.surfrep.2010.08.003

Gomes, T.; Angioletto, E.; Quadri, M. B.; Cardoso, W.A. 2019. Ozone Propagation in Sterile Waste Piles from Uranium Mining: Modeling and Experimental Validation. Transport in Porous Media, 127, 157-170. https://doi.org/10.1007/s11242-018-1184-1

Gomes, T.; Angioletto, E.; Quadri, M. B.; Cargnin, M.; Souza, H. M. 2022a. Acceleration of acid mine drainage generation with ozone and hydrogen peroxide: Kinetic leach column test and oxidant propagation modeling. Minerals Engineering, 175, 107282. https://doi.org/10.1016/j.mineng.2021.107282

Gomes, T.; Rosa, R.; Cargnin, M.; Quadri, M. B.; Peterson, M.; Oliveira, C. M.; Rabelo N. R.; Angioletto, E. 2022b. Pyrite roasting in modified fluidized bed: Experimental and modeling analysis. Chemical Engineering Science, 261, 117977. https://doi.org/https://doi.org/10.1016/j.ces.2022.117977

Hwang, C. C.; Streeter, R. C.; Young, R. K.; Shah, Y. T. 1987. Kinetics of the ozonation of pyrite in aqueous suspension. Fuel, 66, 1574-1578. https://doi.org/10.1016/0016-2361(87)90022-6

Kaufman, S.; Devoe, H. 1988. Iron analysis by redox titration: A general chemistry experiment. Journal of Chemical Education, 65, 183. https://doi.org/10.1021/ed065p183

Kollias, K.; Mylona, E.; Adam, K.; Papassiopi, N.; Xenidis, A. 2014. Suppression of Pyrite Oxidation by Surface Silica Coating. Journal of Geoscience and Environment Protection, 02, 37-43. https://doi.org/10.4236/gep.2014.24006

Lv, X.; Zhao, H.; Zhang, Y.; Yan, Z.; Zhao, Y.; Zheng, H.; Liu, W.; Xie, J.; Qiu, G. 2021. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system. Chemosphere, 277, 130335. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130335

Parbhakar-Fox, A.; Lottermoser, B. G. 2015. A critical review of acid rock drainage prediction methods and practices. Minerals Engineering, 82, 107-124. https://doi.org/10.1016/j.mineng.2015.03.015

Park, I.; Tabelin, C. B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. 2019. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588-606. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.11.053

Peterson, M. 2008. Produção de sulfato ferroso a partir da pirita: desenvolvimento sustentável. Doctoral thesis. Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil. 128p.

Rodríguez-Rodríguez, C.; Nava-Alonso, F.; Uribe-Salas, A. 2018. Pyrite oxidation with ozone: stoichiometry and kinetics. Canadian Metallurgical Quarterly, 57, 294-303. https://doi.org/10.1080/00084433.2018.1460437

Santos, E. C.; Silva, J. C. M.; Duarte, H. A. 2016. Pyrite Oxidation Mechanism by Oxygen in Aqueous Medium. The Journal of Physical Chemistry C, 120, 2760-2768. https://doi.org/10.1021/acs.jpcc.5b10949

Saria, L.; Shimaoka, T.; Miyawaki, K. 2006. Leaching of heavy metals in acid mine drainage. Waste Management & Research, 24, 134-140. https://doi.org/10.1177/0734242X06063052

Souza, H. M.; Savi, G. D.; Gomes, T.; Cardoso, W. A.; Cargnin, M.; Angioletto, E. 2021. Ozone Application in COVID-19 Triage Areas and Its Efficiency of Microbial Decontamination. Ozone: Science & Engineering, 43, 306-316. https://doi.org/10.1080/01919512.2021.1908880

SIECESC. 2021. (Sindicato da Indústria de Extração de Carvão do Estado de Santa Catarina, Carvão Mineral) – Dados Estatísticos – Ano: 2020, 2021. Available at: http://www.siecesc.com.br/dados_estatisticos. Access at: 20/06/2023.

Wang, T.; Zhang, H.; Yang, H.; Lv, J. 2020. Oxidation mechanism of pyrite concentrates (PCs) under typical circulating fluidized bed (CFB) roasting conditions and design principles of PCs’ CFB roaster. Chemical Engineering and Processing - Process Intensification, 153, 107944. https://doi.org/https://doi.org/10.1016/j.cep.2020.107944

Published

2024-08-12

How to Cite

Angioletto, E., Gomes, T., Magnus, E. S., Noni Júnior, A. de, & Angioletto, E. (2024). Desulfurization of coal pyrite tailings with ozone. Journal of Environmental Analysis and Progress, 9(3), 188–195. https://doi.org/10.24221/jeap.9.3.2024.6078.188-195