Relações lineares entre caracteres do pendão e da espiga em bases genéticas de milho

Authors

DOI:

https://doi.org/10.24221/jeap.9.2.2024.6208.065-078

Keywords:

Zea mays L., linear correlation, path analysis, regression tree

Abstract

The phenotypic responses of maize vary due to its genetic bases. Therefore, it is important to understand whether these variations in phenotype have an impact the linear relationships between traits. The objectives of this study were to verify whether there are linear relationships between tassel and ear traits and whether these relationships are different between the genetic bases (single, triple and double hybrids and varieties) of maize. An experiment was conducted with maize genotypes on five sowing dates. On the first sowing date (September 21, 2021), 71 genotypes were evaluated (46 single hybrids, 14 triple hybrids, 3 double hybrids and 8 varieties). On the other four sowing dates (October 20, 2021, November 20, 2021, December 20, 2021 and January 30, 2022) 78 genotypes were evaluated (47 simple hybrids, 15 triple hybrids, 8 double hybrids and 8 varieties). In five plants of each genotype and sowing date (n = 1,915 plants), the length of the tassel, ear diameter, ear length, number of rows of grains per ear, ear mass, cob diameter, cob mass, grain length and ear grain mass were measured. Correlation, path and regression tree analyses were carried out. There are linear relationships between the traits of the tassel and the ear. The linear relationships between the traits are similar between the genetic bases. Ear mass can be used to indirectly select plants with greater grain mass, regardless of genetic bases.

Downloads

Download data is not yet available.

References

Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparover, G. 2013. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrif, 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Alves, B. M.; Cargnelutti Filho, A. 2017. Genotypic correlation and path analysis in early and super-early maize genotypes. Genetics and Molecular Research, 16, 1-12. https://doi.org/10.4238/gmr16029671

Barbosa, M. H.; Carvalho, I. R.; Szareski, V. J.; Conte, G. G.; Pelegrin, A. J.; Ferrari, M.; Rosa, T. C.; Mambrim, R. B.; Nardino, M.; Oliveira, A. C.; Maia, L. C.; Souza, V. Q. 2019. Path analysis and canonical variables of intervarietal maize hybrids. Plant Omics, 12, 1-8. http://dx.doi.org/10.21475/poj.12.01.19.pt848

Carvalho, I. R.; Nardino, M.; Demari, G. H.; Pelegrin, A. J.; Ferrari, M.; Szareski, V. J.; Oliveira, V. F.; Barbosa, M. H.; Souza, V. Q.; Oliveira, A. C.; Maia, L. C. 2017. Components of variance and inter-relation of important traits for maize (Zea mays) breeding. Australian Journal of Crop Science, 11, 982-988. http://dx.doi.org/10.21475/ajcs.17.11.08.pne474

Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. 2014. Modelos biométricos aplicados ao melhoramento genético. 3 ed. Viçosa: UFV. 668p.

Emygdio, B. M.; Ignaczak, J. C.; Cargnelutti Filho, A. 2007. Potencial de rendimento de grãos de híbridos comerciais simples, triplos e duplos de milho. Revista Brasileira de Milho e Sorgo, 6, 95-103. https://doi.org/10.18512/1980-6477/rbms.v6n01p%25p

Ertiro, B. T.; Beyene, Y.; Das, B.; Mugo, S.; Olsen, M.; Oikeh, S.; Juma, C.; Labuschagne, M.; Prasanna, B. M. 2017. Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and non-stress environments in Kenya. Plant Breeding, 136, 197-205. https://doi.org/10.1111/pbr.12464

Fancelli, A. L.; Dourado Neto, D. 2009. Milho: manejo e produtividade. Piracicaba: ESALQ/USP, 181p.

Lima, D. C.; Leon, N.; Kaeppler, S. M. 2022. Utility of anthesis-silking interval information to predict grain yield under water and nitrogen limited conditions. Crop Science, 63, 151-163. https://doi.org/10.1002/csc2.20854

Lima, R. O.; Borém, A. 2018. Melhoramento de milho. Editora: UFV, 396p.

Loh, W. Y. 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1, 14-23. https://doi.org/10.1002/widm.8

Lopes, S. J.; Lúcio, A. D. C.; Storck, L.; Damo, H. P.; Brum, B.; Santos, V. J. D. 2007. Relações de causa e efeito em espigas de milho relacionadas aos tipos de híbridos. Ciência Rural, 37, 1536-1542. https://doi.org/10.1590/S0103-84782007000600005

Milborrow, S. 2022. _rpart.plot: Plot ´rpart` Models: an Enhanced Version of ´plot.rpart`_. R package version 3.1.1. Available at: https://CRAN.R-project.org/package=rpart.plot

Nardino, M.; Baretta, D.; Carvalho, I. R.; Follmann, D. N.; Konflanz, V. A.; Souza, V. Q.; Oliveira, A. C.; Maia, L. C. 2016. Correlações fenotípica, genética e de ambiente entre caracteres de milho híbrido da Região Sul do Brasil. Revista Brasileira de Biometria, 34, 379-394.

Parajuli, S.; Ojha, B. R.; Ferrara, G. O. 2018. Quantification of secondary traits for drought and low nitrogen stress tolerance in inbreds and hybrids of maize (Zea mays L.). Journal of Plant Breeding and Genetics, 2, 106-118.

Pedro, C.; Marçola, M. A.; Charimba, A. M.; Queiroz, L. G. C. D.; Souza, J. C. 2023. Genetic potential of maize full-sib progenies subjected to a reciprocal recurrent selection. Pesquisa Agropecuária Brasileira, 58, e03134. https://doi.org/10.1590/S1678-3921.pab2023.v58.03134

Pinheiro, L. S.; Vieira, R. C.; Barata, H. S.; Mota, R. S.; Sousa, R. F.; Vieira, M. M.; Nascimento, M. R.; Silva, V. F. A.; Oliveira, J. T.; Silva, P. A. 2021. Analysis of the path of the corn cob mass and its physical atributes. Research, Society and Development, 10, e41510111912. https://doi.org/10.33448/rsd-v10i1.11912

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Rosa, T. C. D.; Carvalho, I. R.; Szareski, V. J.; Pelegrin, A. J.; Barbosa, M. H.; Santos, N. L.; Martins, T. S.; Uliana, A. S.; Souza, V. Q. 2018. Agronomic performance and multivariate analysis applied to three-waycross maize hybrids. Journal of Agricultural Science, 10, 319-328. https://doi.org/10.5539/jas.v10n5p319

Santos, H. G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Lumbreras, J. F.; Coelho, M. R.; Almeida, J. A.; Araújo Filho, J. C.; Oliveira, J. B.; Cunha, T. J. F. 2018. Sistema brasileiro de classificação de solos. 5. ed. Rio de Janeiro: Embrapa Solos, 590p.

Silveira, D. L.; Cargnelutti Filho, A.; Neu, I. M.; Bubans, V. E.; Osmari, B. F.; Osmari, L. F. 2023. Canonical correlations in phenological, morphological, production and tassel traits of maize. Revista Caatinga, 36, 561-571. https://doi.org/10.1590/1983-21252023v36n309rc

Therneau, T.; Atkinson, B. 2022. _rpart: Recursive Partitioning and Regression Trees_. R package version 4.1.19. Available at: https://CRAN.R-project.org/package=rpart

Troyjack, C.; Pimentel, J. R.; Carvalho, I. R.; Szareski, V. J.; Junior, G. T.; Dubal, Í. T. P.; Demari, G. H.; Lautenchleger, F.; Martins, A. B. N.; Villela, F. A.; Aumonde, T. Z.; Pedó, T. 2019. Research article productive performance and multivariate interrelations of open-pollinated and hybrid maize in Brazil. Genetics and Molecular Research, 18, 1-9. http://dx.doi.org/10.4238/gmr18180

Published

2024-04-03

How to Cite

Loro, M. V., Cargnelutti Filho, A., Ortiz, V. M., Reis, M. B. dos, Andretta, J. A., & Schuller, B. R. (2024). Relações lineares entre caracteres do pendão e da espiga em bases genéticas de milho. Journal of Environmental Analysis and Progress, 9(2), 065–078. https://doi.org/10.24221/jeap.9.2.2024.6208.065-078