Optimization of anaerobic digestion of agricultural residues: scientific prospection of alternative alkalizers

Authors

DOI:

https://doi.org/10.24221/jeap.9.4.2024.6228.253-264

Keywords:

Acidification, Biogas, Methane, Waste

Abstract

Anaerobic digestion (AD) enables the transformation of waste into value-added products, being implemented in several agricultural properties in Brazil. When used in the treatment of easily biodegradable materials can suffer instability resulting in failure by acidification, which can commonly be remedied with the use of chemicals, which increases the cost of the process. Therefore, the present study aimed to analyze the worldwide panorama of scientific publications on the AD of agricultural waste and conduct a scientific prospection of articles that evaluate materials or substances alternatives to chemical alkali, able to stabilize pH. to conduct the research we used the database web of science, sciencedirect and scopus. The results show that the studies directed to the use of technology are multidisciplinary and showed significant growth over the years. On the world stage can be observed the predominance of Chinese in the number of publications, a result associated with the set of public policies in the country focused on the use of biomass generated. In scientific prospecting, there is diversity in the characteristics and results obtained with the alkali, being used carbon-based materials, industrial waste and agricultural waste with buffering effect. However, the development of research on this topic proved to be little explored, making.

Downloads

Download data is not yet available.

Author Biographies

Vitor Marcos Lima dos Santos, Universidade Federal do Vale do São Francisco

Discente do curso de Engenharia Agrícola e Ambiental e Bolsista do Programa de Educação Tutorial - PET Saneamento Ambiental. 

Guilherme Henrique de Lima Freitas, Universidade Federal do Vale do São Francisco

Discente do curso de Engenharia Agrícola e Ambiental e Bolsista do Programa de Educação Tutorial - PET Saneamento Ambiental. 

Miriam Cleide Cavalcante de Amorim , Universidade Federal do Vale do São Francisco

Docente do curso de Engenharia Agrícola e Ambiental e Tutora do Programa de Educação Tutorial - PET Saneamento Ambiental. 

References

Barizon, F. 2020. Mapeamento do potencial de produção de biogás no estado do Paraná a partir de dejetos de suínos e bovinos leiteiros. Dissertação de mestrado, Universidade Tecnológica Federal do Paraná. Francisco Beltrão, Paraná, Brasil. 123p.

Brasil. 2022. Decreto Nº 11.003, de 21 de março de 2022. Institui a Estratégia Federal de Incentivo ao Uso Sustentável de Biogás e Biometano. Brasília, DF: Diário oficial da união. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/decreto/d11003.htm

Buitrón, G.; Martínez-Valdez, F. J.; Ojeda, F. 2019. Biogas Production from a Highly Organic Loaded Winery Effluent Through a Two-Stage Process. Bioenerg. Res., 12, 714-721. https://doi.org/10.1007/s12155-019-09984-7

Carotenuto, C.; Guarino, G.; D’Amelia, I. L.; Morrone, B.; Minale, M. 2020. The peculiar role of C/N and initial pH in anaerobic digestion of lactating and non-lactating water buffalo manure. Waste Management, 103, 12-21. https://doi.org/10.1016/j.wasman.2019.12.008

Chew, R. K.; Leong, Y. H.; Khoo, S. K.; Vo, N. V. D.; Anjum, H.; Chang, K. C.; Show, L. P. 2021. Effects of Anaerobic Digestion of Food Waste on Biogas Production and Environmental Impacts: a review. Environmental Chemistry Letters, 19, 2921-2939. https://doi.org/10.1007/s10311-021-01220-z

Cruz, I. A.; Andrade, L. R. S.; Jesus, A. A.; Vasconcelos, B. R.; Bharagava, R. N.; Bilal, M.; Figueiredo, R. T.; Souza, R. L.; Ferreira, L. F. R. 2022. Potential of eggshell waste derived calcium for sustainable production of biogas from cassava wastewater. Journal of Environmental Management, 321, 116000. https://doi.org/10.1016/j.jenvman.2022.116000

Egwu, U.; Uchenna-Egwu, B.; Ezeokpube, G. C. 2021. Ash-extracts from plant residues can provide sufficient buffering alkalinity and trace elements required to prevent operation instability to guarantee optimum methane yield during anaerobic digestion of agricultural residues. Journal of Cleaner Production, 318, 128369. https://doi.org/10.1016/j.jclepro.2021.128369

Ghimire, A.; Luonga, V.; Frunzo, L.; Pirozzi, F.; Lens, L. N. P.; Esposito, G. 2017. Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: Use of buffalo manure as buffering agent. International Journal of Hydrogen Energy, 42, 4861-4869. https://doi-org.ez21.periodicos.capes.gov.br/10.1016/j.ijhydene.2016.11.185

Jankovi?ová, B.; Hut?an, M.; Czölderová, M. N.; Hencelová, K.; Imreová, Z. 2022. Comparison of Acid and Alkaline pre-treatment of Lignocellulosic Materials for Biogas Production. Plant, Soil and Environment, 68, 195-204. https://doi.org/10.17221/421/2021-PSE

Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. 2021. Anaerobic digestion: An Alternative Resource Treatment Option for Food Waste in China. Science of The Total Environment, 779, 146397. https://doi.org/10.1016/j.scitotenv.2021.146397

Kunz, A.; Steinmetz, R. L. R.; Amaral, A. C. 2022. Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato. Concórdia: Sbera: Embrapa Suínos e Aves, Segunda Edição, 211p.

Li, D.; Sol, J.; Cao, Q.; Chen, Y.; Liu, X.; Ran, Y. 2019. Recovery of unstable digestion of vegetable waste by adding trace elements using the bicarbonate alkalinity to total alkalinity ratio as an early warning indicator. Biodegradation, 30, 87-100. https://doi-org.ez21.periodicos.capes.gov.br/10.1007/s10532-019-09868-9

Lourinho, G.; Rodrigues, L. F. T. G.; Brito, P. S. D. 2020. Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17, 4917-4938. https://doi.org/10.1007/s13762-020-02793-y

Lu, Y.; Zhang, Q.; Wang, X.; Zhou, X.; Zhu, J. 2020. Effect of pH on Volatile Fatty Acid Production from Anaerobic Digestion of Potato Peel Waste. Bioresource Technology, 316, 123851. https://doi.org/10.1016/j.biortech.2020.123851

Luo, X.; Liu, Y.; Muhmood, A.; Zhang, Q.; Jingjing, W.; Ruan, R.; Wang, Y.; Cui, X. 2022. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. Journal of Environmental Management, 323, 116218. https://doi.org/10.1016/j.jenvman.2022.116218

Ma, J. Y.; Wei, H. W.; Su, Y. L.; Gu, W. C.; Wang, B. H.; Xie, B. 2020. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights. Bioresource Technology, 313, 123706. https://doi.org/10.1016/j.biortech.2020.123706

Mühl, D. D.; Oliveira, L. 2022. Features of anaerobic digestion plants in the Brazilian agricultural sector. Cleaner and Circular Bioeconomy, 1, 100001. https://doi.org/10.1016/j.clcb.2021.100001

Notodarmojo, P. A.; Fujiwara, T.; Habuer; Van, D. P. 2022. Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis. Energy, 239, 122241. https://doi.org/10.1016/j.energy.2021.122177

Notodarmojo P. A.; Fujiwara T.; Habuer. 2021. Oyster Shell as pH Control Substitute for Two Stage Anaerobic CoDigestion System. Chemical Engineering Transactions, 83, 481-486. https://doi.org/10.3303/CET2183081

Ogbu, C. C.; Okechukwu, S. N. 2023. Agro-Industrial Waste Management: The Circular and Bioeconomic Perspective. In: Ahmad, F.; Sultan, M. (Eds.). Agricultural Waste - New Insights, Cap. 9, 37p. https://doi.org/10.5772/intechopen.109181

Santos, D. L.; Santana, R.; Lima, A. M. F. 2021. Prospecção Bibliométrica e Patentária de Agentes Antimicrobianos em Têxteis. Cadernos de Prospecção, 14, 332. https://doi.org/10.9771/cp.v14i2.43518

Santos, T. D.; Couto, E. A.; Vieira, E. M. 2021. Mapping the potential of the State of Minas Gerais, Brazil, in generating electricity from biogas from anaerobic digestion of vinasse. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8, 793-801. https://doi.org/10.21438/rbgas(2021)081909

Shamurad, B.; Gray, N.; Petropoulos, E.; Tabraiz, S.; Acharya, K.; Quintela-Baluja, M.; Sallis, P. 2019. Co-digestion of organic and mineral wastes for enhanced biogas production: Reactor performance and evolution of microbial community and function. Waste Management, 87, 313-325. https://doi.org/10.1016/j.wasman.2019.02.021

Shen, Y.; Linville, J. L.; Leon, P. A. A. I.; Schoene, R. P.; Urgun-Dermirtas, M. 2016. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. Journal of Cleaner Production, 135, 1054-1064. https://doi.org/10.1016/j.jclepro.2016.06.144

Tiwari, S. B.; Dubey, M.; Ahmed, B.; Gahlot, P.; Khan, A. A.; Rajpal, A.; Kazmi, A. A.; Tyagi, V. K. 2021. Carbon-based conductive materials facilitated anaerobic co-digestion of agro waste under thermophilic conditions. Waste Management, 124, 17-25. https://doi.org/10.1016/j.wasman.2021.01.032

Wang, D.; Ai, J.; Shen, F.; Yang, G.; Zhang, Y. Z.; Deng, S. H.; Zhang, J.; Zeng, Y. M.; Song, C. 2017. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresource Technology, 227, 286-296. https://doi.org/10.1016/j.biortech.2016.12.060

Yin, C. K.; Shen, Y. W.; Yu, Y. M.; Yuan, H. P.; Lou, Z. Y.; Zhu, N. W. 2019. In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen adaption and CO2 sequestration. Bioresource Technology, 282, 1-8. https://doi.org/10.1016/j.biortech.2019.02.110

Zhang, J. S.; Wang, Q. Q.; Zheng, P. W.; Wang, Y. S. 2014. Anaerobic digestion of food waste stabilized by lime mud from papermaking process. Bioresource Technology, 170, 2270-277. https://doi.org/10.1016/j.biortech.2014.08.003

Zhou, J.; Zhang, R.; Liu, F.; Yong, X.; Wu, X.; Zheng, T.; Jiang, M. 2016. Biogas Production and Microbial Community Shift Through Neutral pH Control During the Anaerobic Digestion of Pig Manure. Bioresource Technology, 217, 44-49. https://doi-org.ez21.periodicos.capes.gov.br/10.1016/j.biortech.2016.02.077

Published

2024-10-08

How to Cite

Santos, V. M. L. dos, Freitas, G. H. de L., & Amorim , M. C. C. de. (2024). Optimization of anaerobic digestion of agricultural residues: scientific prospection of alternative alkalizers. Journal of Environmental Analysis and Progress, 9(4), 253–264. https://doi.org/10.24221/jeap.9.4.2024.6228.253-264