Estimating tree aboveground biomass in an Atlantic Forest remnant using different modelling methods

Authors

DOI:

https://doi.org/10.24221/jeap.9.4.2024.6499.325-339

Keywords:

AGB, GLM, Random Forest, Remote sensing

Abstract

The Atlantic Forest stores vast amounts of aboveground biomass (AGB), yet it is still a challenge to estimate these stocks. We aimed to predict the AGB stock of the largest biodiversity remnant of Serra da Tiririca State Park (Rio de Janeiro, Brazil) by comparing the accuracy of generalized linear models (GLM) and random forest (RF) models, using data from field plots, remote sensing, and environmental variables. The plots showed an AGB of 371.12 Mg/ha. The comparison between the modelling methods revealed that the GLM is more accurate, still the RF is also fit to estimate the AGB of the remnant. The most accurate GLM predicted an AGB of 405.31 Mg/ha. We observed that the accuracy of the models improved when all predictor variables were combined. This study allowed us to improve the AGB estimates, and produce an AGB map useful for the management and conservation of the remnant

Downloads

Download data is not yet available.

Author Biographies

Felipe Zuñe, Universidade Federal do Rio de Janeiro

Doutorando, Universidade Federal do Rio de Janeiro, Museu Nacional, Programa de Pós-graduação em Ciências Biológicas (Botânica), Rio de Janeiro, Brasil.

Pablo José Francisco Pena Rodrigues, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro

Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil.

Nílber Gonçalves da Silva, Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Botânica, Laboratório de Florística e Biogeografia Insular e Montana, Rio de Janeiro, Rio de Janeiro, Brasil.

Consuelo Rojas-Idrogo, Universidad Nacional Pedro Ruiz Gallo

Universidad Nacional Pedro Ruiz Gallo, Departamento Académico de Botánica, Lambayeque, Perú.

Guillermo Eduardo Delgado-Paredes, Universidad Nacional Pedro Ruiz Gallo

Universidad Nacional Pedro Ruiz Gallo, Departamento Académico de Botánica, Lambayeque, Perú.

Alex Enrich-Prast, Linköping University

Linköping University, Department of Thematic Studies, Environmental Change, Linköping, Sweden

Cássia Mônica Sakuragui, Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Brasil.

References

Ali, A.; Lin, S. L.; He, J. K.; Kong, F. M.; Yu, J. H.; Jiang, H. S. 2019. Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests. Land Degradation & Development, 30, (8), 918-927. https://doi.org/10.1002/ldr.3278

Almeida, C. T.; Galvao, L. S.; Ometto, J. P. H. B.; Jacon, A. D.; Pereira, F. R. S.; Sato, L. Y.; Lopes, A. P.; Graça, P. M. L. A.; Silva, C. V. J.; Ferreira-Ferreira, J.; Longo, M. 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sensing of Environment, 232, (2019), 111323. https://doi.org/10.1016/j.rse.2019.111323

Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 2, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Alves, L. F.; Vieira, A. S.; Scaranello, M. A.; Camargo, P. B.; Santos, F. A.; Joly, C. A.; Martinelli, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest ecology and management, 260, (5), 679-691. https://doi.org/10.1016/j.foreco.2010.05.023

Asner, G. P.; Hughes, R. F.; Varga, T. A; Knapp, D. E.; Kennedy-Bowdoin, T. 2009. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems, 12, (2), 261-278. https://doi.org/10.1007/s10021-008-9221-5

ABNT. Associação Brasileira de Normas Técnicas. 2003. Madeira: determinação da densidade básica: NBR 11941. Rio de Janeiro. 6p.

Avitabile, V.; Herold, M.; Heuvelink, G. B.; Lewis, S. L.; Phillips, O. L.; Asner, G. P.; Armston, J.; Ashton, P. S.; Banin, L.; Bayol, N.; Berry, N. J.; Boeckx, P.; Jong, B. H. J.; DeVries, B.; Girardin, C. A. J.; Kearsley, E.; Lindsell, J. A.; Lopez-Gonzalez, G.; Lucas, R.; Malhi, Y.; Morel, A.; Mitchard, E. T. A.; Nagy, L.; Qie, L. Quinones, M. J.; Ryan, C. M.; Slik, J. W.; Sunderland, T. F.; Laurin, G. V.; Gatti, R. C.; Valentini, R.; Verbeeck, H.; Wijaya, A.; Willcock, S. 2016. An integrated pan?tropical biomass map using multiple reference datasets. Global change biology, 22, (4), 1406-1420. https://doi.org/10.1111/gcb.13139

Barbosa, J. M.; Melendez-Pastor, I.; Navarro-Pedreño, J.; Bitencourt, M. D. 2014. Remotely sensed biomass over steep slopes: An evaluation among successional stands of the Atlantic Forest Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 88, (2014), 91-100. https://doi.org/10.1016/j.isprsjprs.2013.11.019

Barros, A. A. M. 2008. Análise florística e estrutural do Parque Estadual da Serra da Tiririca, Niterói e Maricá, RJ, Brasil. Tese de Doutorado. Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil. 225p.

Benitez, F. L.; Anderson, L. O.; Formaggio, A. R. 2016. Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data. Acta Amazonica, 46, (2), 151-160. https://doi.org/10.1590/1809-4392201501254

Breiman, L. 2001. Random forests. Machine learning, 45, (1), 5-32.

Burnham, K. P.; Anderson, D. R.; Huyvaert, K. P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral ecology and sociobiology, 65, (1), 23-35. https://doi.org/10.1007/s00265-010-1029-6

Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, (1443), 409-420. https://doi.org/10.1098/rstb.2003.1425

Chave, J. 2006. Measuring wood density for tropical forest trees: A field manual, Pan-Amazonia Project. 6p.

Chave, J.; Réjou?Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M. S.; Delitti, W. B. C; Duque, A.; Eid, T.; Fearnside, P. M.; Goodman, R. C.; Henry, M.; Martínez-Yrízar, A.; Mugasha, W. A.; Muller-Landau, H. C.; Mencuccini, M.; Nelson, B. W.; Ngomanda, A.; Nogueira, E. M.; Ortiz-Malavassi, E.; Pélissier, R.; Ploton, P.; Ryan, C. M.; Saldarriaga, J. G.; Vieilledent, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20, (10), 3177-3190. https://doi.org/10.1111/gcb.12629

Chave, J.; Davies, S. J.; Phillips, O. L.; Lewis, S. L..; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T. R.; Coomes, D.; Disney, M.; Duncanson, L.; Hérault, B.; Labrière, N.; Meyer, V.; Réjou-Méchain, M.; Scipal, K.; Saatchi, S. 2019. Ground data are essential for biomass remote sensing missions. Surveys in Geophysics, 40, (4), 63-880. https://doi.org/10.1007/s10712-019-09528-w

Chazdon, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, evolution and systematics, 6, (1-2), 51-71. https://doi.org/10.1078/1433-8319-00042

Congedo, L. 2016. Semi-automatic classification plugin documentation. Release, 4, (0.1), 29.

Cunha, G. D. M; Gama-Rodrigues, A. C.; Gama-Rodrigues, E. F.; Velloso, A. C. X. 2009. Biomassa e estoque de carbono e nutrientes em florestas montanas da Mata Atlântica na região norte do estado do Rio de Janeiro. Revista Brasileira de Ciência do Solo, 33, (5), 1175-1185. https://doi.org/10.1590/S0100-06832009000500011

Cutler, A.; Cutler, D. R.; Stevens, J. R. 2012. Random forests. In: Ensemble machine learning. Springer, Boston, MA. pp. 157-175.

Cysneiros, V. C.; Souza, F. C.; Gaui, T. D.; Pelissari, A. L.; Orso, G. A.; Machado, S. A.; Silveira-Filho, T. B. 2021. Integrating climate, soil and stand structure into allometric models: An approach of site-effects on tree allometry in Atlantic Forest. Ecological Indicators, 127, (2021), 107794. https://doi.org/10.1016/j.ecolind.2021.107794

David, H. C.; Araújo, E. J. G.; Morais, V. A.; Scolforo, J. R. S.; Marques, J. M.; Netto, S. P.; MacFarlane, D. W. 2017. Carbon stock classification for tropical forests in Brazil: Understanding the effect of stand and climate variables. Forest Ecology and Management, 404, (2017), 241-250. https://doi.org/10.1016/j.foreco.2017.08.044

Debastiani, A. B.; Moura, M. M.; Rex, F. E.; Sanquetta, C. R.; Corte, A. P. D.; Pinto, N. 2019. Regressões robusta e linear para estimativa de biomassa via imagem sentinel em uma floresta tropical. BIOFIX Scientific Journal, 4, (2), 81-87. https://doi.org/10.5380/biofix.v4i2.62922

Diniz, A. R.; Machado, D. L.; Pereira, M. G.; Balieiro, F. D. C.; Menezes, C. E. G. 2015. Biomassa, estoques de carbono e de nutrientes em estádios sucessionais da Floresta Atlântica, RJ. Embrapa Solos-Artigo em periódico indexado, 11p.

EMBRAPA. Empresa Brasileira de Agropecuária. 1997. Manual de métodos de análise de solo. Embrapa Solos, Rio de Janeiro. 212p.

EMBRAPA. Empresa Brasileira de Agropecuária. 2018. Sistema brasileiro de classificação de solos. 5a ed. Embrapa, Brasília. 353p.

Ferraz, A. S.; Soares, V. P.; Soares, C. P. B.; Ribeiro, C. A. A. S.; Binoti, D. H. B.; Leite, H. G. 2014. Estimativa do estoque de biomassa em um fragmento florestal usando imagens orbitais. Floresta e Ambiente, 21, (3), 286-296. https://doi.org/10.1590/2179-8087.052213

Fick, S. E.; Hijmans, R. J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, (12), 4302-4315. https://doi.org/10.1002/joc.5086

Gao, B. C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58, (3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gagliasso, D.; Hummel, S.; Temesgen, H. 2014. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area. Open Journal of Forestry, 4, (1), 42-48. https://doi.org/10.4236/ojf.2014.41008

Gasparri, N. I.; Parmuchi, M. G.; Bono, J.; Karszenbaum, H.; Montenegro, C. L. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating aboveground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 74, (10), 1262-1270. https://doi.org/10.1016/j.jaridenv.2010.04.007

Goward S.; Arvidson T.; Williams D.; Faundeen J.; Irons J.; Franks S. 2006. Historical record of Landsat global coverage. Photogrammetric Engineering & Remote Sensing, 72, (10), 1155-1169. https://doi.org/10.14358/PERS.72.10.1155

Graser, A.; Mearns, B.; Mandel, A.; Ferrero, V. O.; Bruy, A. 2017. QGIS: Becoming a GIS power user. Packt Publishing Ltd. 818p

Guisan, A.; Weiss, S. B.; Weiss, A. D. 1999. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecology, 143, (1999), 107-122. https://doi.org/10.1023/A:1009841519580

Guisan, A.; Edwards Jr, T. C.; Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157, (2-3), 89-100. https://doi.org/10.1016/S0304-3800(02)00204-1

Hansen, M. C.; Potapov, P. V.; Moore, R.; Hancher, M.; Turubanova, S. A.; Tyukavina, A.; Thau, D.; Stehman, S. V.; Goetz, S. J.; Loveland, T. R.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C. O.; Townshend, J. R. G. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342, (6160), 850-853. https://doi.org/10.1126/science.12446

Hijmans, R. J. 2021. Geographic Data Analysis and Modeling [R package raster version 3.4-10].

Huete, A. A. 1998. Soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. Remote sensing of environment, 25, (1998), 295-309.

Huete, A.; Didan, K.; Miura, T.; Rodriguez, E. P.; Gao, X.; Ferreira, L. G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83, (1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Houghton, R. A. 2005. Aboveground Forest biomass and the global carbon balance. Global change biology, 11, (6), 945-958. https://doi.org/10.1111/j.1365-2486.2005.00955.x

INEA. Instituto Estadual do Ambiente. 2015. Plano de Manejo do Parque Estadual da Serra da Tiririca. Governo do Estado do Rio de Janeiro. 105p.

Kersten, R. A.; Galvão F. 2011. Suficiência amostral em inventários florísticos e fitossociológicos. In: Felfili, J. M. et al. Fitossociologia no Brasil: métodos e estudos de casos. Editora UFV. Viçosa, MG. pp. 156-173.

Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T. 2016. Caret: Classification and Regression Training (version 6.0-64).

Laurance, W. F.; Fearnside, P. M.; Laurance, S. G.; Delamonica, P.; Lovejoy, T. E.; Merona, J. M. R.; Chambers, J. Q.; Gascon, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 118, (1-3), 127-138. https://doi.org/10.1016/S0378-1127(98)00494-0

Laurance, W. F.; Camargo, J. L.; Fearnside, P. M.; Lovejoy, T. E.; Williamson, G. B.; Mesquit, R. C.; Meyer, C. F. J.; Bobrowiec, P. E. D.; Laurance, S. G. W. 2018. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 93, (1), 223-247. https://doi.org/10.1111/brv.12343

Li, Y.; Li, C.; Li, M.; Liu, Z. 2019. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests, 10, (12), 1073. https://doi.org/10.3390/f10121073

Liaw, A.; Wiener, M. 2002. Classification and regression by randomForest. R news, 2, (3), 18-22.

Lindner, A.; Sattler, D. 2012. Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro, Brazil. New Forests, 43, (3), 287-301. https://doi.org/10.1007/s11056-011-9281-9

Lopatin, J.; Dolos, K.; Hernández, H. J.; Galleguillos, M.; Fassnacht, F. E. 2016. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment, 173, (2016), 200-210. https://doi.org/10.1016/j.rse.2015.11.029

Lu, D.; Mausel, P.; Brond?zio, E.; Moran, E. 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198, (1-3), 149-167. https://doi.org/10.1016/j.foreco.2004.03.048

Lu, D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26, (12), 2509-2525. https://doi.org/10.1080/01431160500142145

Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9, (1), 63-105. https://doi.org/10.1080/17538947.2014.990526

Nascimento, H. E. M.; Laurance, W. F.; 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management, 168, (1-3), 311-321. https://doi.org/10.1016/S0378-1127(01)00749-6

Martins, S. C.; Sousa Neto, E.; Piccolo, M. C.; Almeida, D.; Camargo, P.; Carmo, J. B.; Porder, S.; Lins, R. S. M.; Martinelli, L. A. 2015. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Regional, 5, (2015), 106-116. https://doi.org/10.1016/j.geodrs.2015.04.005

Mazzei, L.; Sist, P.; Ruschel, A.; Putz, F. E.; Marco, P.; Pena, W.; Ferreira, J. E. R. 2010. Aboveground biomass dynamics after reduced-impact logging in the Eastern Amazon. Forest Ecology and Management, 259, (3), 367-373. https://doi.org/10.1016/j.foreco.2009.10.031

McCullagh, P.; Nelder, J. A. 2019. Generalized linear models. Routledge. 532p. https://doi.org/10.1201/9780203753736

Medeiros, M. C. M. P. D.; Aidar, M. P. M. 2011. Structural variation and content of aboveground living biomass in an area of Atlantic Forest in the State of São Paulo, Brazil. Hoehnea, 38, (3), 413-428. https://doi.org/10.1590/S2236-89062011000300004

Meira Junior, M. S.; Pinto, J. R. R.; Ramos, N. O.; Miguel, E. P.; Gaspar, R. D. O.; Phillips, O. L. 2020. The impact of long dry periods on the aboveground biomass in a tropical forest: 20 years of monitoring. Carbon balance and management, 15, (12), 1-14. https://doi.org/10.1186/s13021-020-00147-2

Mitchard, E. T. A. 2018. The tropical forest carbon cycle and climate change. Nature, 559, (7715), 527-534. https://doi.org/10.1038/s41586-018-0300-2

Myers, N.; Mittermeier, R. A.; Mittermeier, C. G.; Fonseca, G. A.; Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, (6772), 853-858. https://doi.org/10.1038/35002501

Pan, Y.; Birdsey, R. A.; Fang, J.; Houghton, R.; Kauppi, P. E.; Kurz, W. A.; Phillips, O. L.; Shvidenko, A.; Lewis, S. L.; Canadell, J. G.; Ciais, P.; Jackson, R. B.; Pacala, S. W.; McGuire, A. D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333, (6045), 988-993. https://doi.org/10.1126/science.1201609

Poorter, L.; van der Sande, M. T.; Thompson, J.; Arets, E. J.; Alarcón, A.; Álvarez?Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; Bongers, F.; Carvalho, F. A.; Casanoves, F.; Cornejo-Tenorio, G.; Costa, F. R. C.; Castilho, C. V.; Duivenvoorden, J. F.; Dutrieux, L. P.; Enquist, B. J.; Fernández-Méndez, F.; Finegan, B.; Gormley, L. H. L.; Healey, J. R.; Hoosbeek, M. R.; Ibarra-Manríquez, G.; Junqueira, A. B.; Levis, C.; Licona, J. C.; Lisboa, L. S.; Magnusson, W. E.; Martínez-Ramos, M.; Martínez-Yrizar, A.; Martorano, L. G.; Maskell, L. C.; Mazzei, L.; Meave, J. A.; Mora, F.; Muñoz, R.; Nytch, C.; Pansonato, M. P.; Parr, T. W.; Paz, H.; Pérez-García, E. A.; Rentería, L. Y.; Rodríguez-Velazquez, J.; Rozendaal, D. M. A.; Ruschel, A. R.; Sakschewski, B.; Salgado-Negret, B.; Schietti, J.; Simões, M.; Sinclair, F. L.; Souza, P. F.; Souza, F. C.; Stropp, J.; Steege, H.; Swenson, N. G.; Thonicke, K.; Toledo, M.; Uriarte, M.; van der Hout, P.; Walker, P.; Zamora, N.; Peña-Claros, M. 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, (11), 1314-1328. https://doi.org/10.1111/geb.12364

Poorter, L.; Bongers, F.; Aide, T.M.; Zambrano, A. M. A.; Balvanera, P.; Becknell, J. M.; Boukili, V.; Brancalion, P. H. S.; Broadbent, E. N.; Chazdon, R. L.; Craven, D.; Almeida-Cortez, J. S.; Cabral, G. A. L.; Jong, B. H. J.; Denslow, J. S.; Dent, D. H.; DeWalt, S. J.; Dupuy, J. M; Durán, S. M.; Espírito-Santo, M. M.; Fandino, M. C.; César, R. G.; Hall, J. S.; Hernandez-Stefanoni, J. L.; Jakovac, C. C.; Junqueira, A. B.; Kennard, D.; Letcher, S. G.; Licona, J. C.; Lohbeck, M.; Marín-Spiotta, E.; Martínez-Ramos, M.; Massoca, P.; Meave, J. A.; Mesquita, R.; Mora, F.; Muñoz, R.; Muscarella, R.; Nunes, Y. R. F.; Ochoa-Gaona, S.; Oliveira, A. A.; Orihuela-Belmonte, E.; Peña-Claros, M.; Pérez-García, E. A.; Piotto, D.; Powers, J. S.; Rodríguez-Velázquez, J.; Romero-Pérez, I. E.; Ruíz, J.; Saldarriaga, J.G.; Sanchez-Azofeifa, A.; Schwartz, N. B.; Steininger, M. K.; Swenson, N. G.; Toledo, M.; Uriarte, M.; van Breugel, M.; van der Wal, H.; Veloso, M. D. M.; Vester, H. F. M.; Vicentini, A.; Vieira, I. C .G.; Vizcarra Bentos, T.; Williamson, G. B.; Rozendaal, D. M. A. 2016. Biomass resilience of Neotropical secondary forests. Nature, 530, (7589), 211-214. https://doi.org/10.1038/nature16512

Poorter, L.; van der Sande, M. T.; Arets, E. J.; Ascarrunz, N.; Enquist, B. J.; Finegan, B.; Licona, J. C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A.; Muñoz, R.; Nytch, C. J.; Oliveira, A. A.; Pérez-García, E. A.; Prado-Junior, J.; Rodríguez-Velázques, J.; Ruschel, A. R.; Salgado-Negret, B.; Schiavini, I.; Swenson, N. G.; Tenorio, E. A.; Thompson, J.; Toledo, M.; Uriarte, M.; van der Hout, P.; Zimmerman, J. K.; Peña-Claros, M. 2018. Biodiversity and climate determine the functioning of Neotropical forests. Global ecology and biogeography, 26, (12), 1423-1434. https://doi.org/10.1111/geb.12721

Powell, S. L.; Cohen, W. B.; Healey, S. P.; Kennedy, R. E.; Moisen, G. G.; Pierce, K. B.; Ohmann, J. L. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114, (5), 1053-1068. https://doi.org/10.1016/j.rse.2009.12.018

QGIS. QGIS Development Team. 2021. QGIS Geographic Information System. Open Source Geospatial Found.

R Core Team. 2021. A Language and Environment for Statistical Computing.

Ren, H.; Zhou, G.; Zhang, F. 2018. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209, (2018), 439-445. https://doi.org/10.1016/j.rse.2018.02.068

Riley, S. J.; DeGloria, S. D; Elliot, R. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, (1-4), 23-27.

Ripley, B.; Venables, B.; Bates, D. M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. 2013. Package ‘mass’. Cran r. 538:113-120.

Rio de Janeiro. 1991. Lei Estadual n° 1.901, de 29 de novembro de 1991. Dispõe sobre a criação do Parque Estadual da Serra da Tiririca e dá outras providencias.

Rolim, S. G.; Jesus, R. M.; Nascimento, H. E. M.; Couto, H. T. Z.; Chambers, J. C. 2005. Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia, 142, (2005), 238-246. https://doi.org/10.1007/s00442-004-1717-x

Rouse, J. W.; Haas, R. H.; Schell, J. A.; Deering, D. W.; Harlan, J. C. 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report. Greenbelt. 371p.

Saatchi, S. S.; Houghton, R. A.; Dos Santos Alvala, R. C.; Soares, J. V.; Yu, Y. 2007. Distribution of aboveground live biomass in the Amazon basin. Global change biology, 13, (4), 816-837. https://doi.org/10.1111/j.1365-2486.2007.01323.x

Saatchi, S. S.; Harris, N. L.; Brown, S.; Lefsky, M.; Mitchard, E. T; Salas, W.; Zutta, B. R.; Buermann, W.; Lewis, S. L.; Hagen, S.; Petrova, S.; White, L.; Silman, M.; More, A. 2011a. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the national academy of sciences, 108, (24), 9899-9904. https://doi.org/10.1073/pnas.101957610

Saatchi, S.; Marlier, M.; Chazdon, R. L.; Clark, D. B.; Russell, A. E. 2011b. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 115, (11), 2836-2849. https://doi.org/10.1016/j.rse.2010.07.015

Sanchez, M.; Pedroni, F.; Eisenlohr, P. V.; Oliveira-Filho, A. T. 2013. Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeastern Brazil, from near sea level to 1000 m of altitude. Flora-Morphology, Distribution, Functional Ecology of Plants, 208, (3), 184-196. https://doi.org/10.1016/j.flora.2013.03.002

Santos, E. B.; Pimentel, R. M. M.; Silva, M. D. 2023. Landscape Ecology applied to the study of the Atlantic Forest. Journal of Environmental Analysis and Progress, 8, (3), 184-189. https://doi.org/10.24221/jeap.8.3.2023.5427.184-189

Sakate, D. M.; Kashid, D. N. 2014. A deviance-based criterion for model selection in GLM. Statistics, 48, (1), 34-48. https://doi.org/10.1080/02331888.2012.708035

Sampaio, T. V. M.; Augustin, C. H. R. R. 2014. Índice de concentração da rugosidade: uma nova proposta metodológica para o mapeamento e quantificação da dissecação do relevo como subsídio a cartografia geomorfológica. Revista Brasileira de Geomorfologia, 15, (1), 47-60. https://doi.org/10.20502/rbg.v15i1.376

Silva, L. C.; Araújo, E. J. G.; Curto, R. A.; Nascimento, A. M.; Ataíde, D. H. dos S.; Morais, V. A. 2018. Estoques de biomassa e carbono em unidade de conservação no Bioma Mata Atlântica. BIOFIX Scientific Journal, 3, (2), 243-251. https://dx.doi.org/10.5380/biofix.v3i2.59592

Schuh, M.; Favarin, J. A. S.; Marchesan, J.; Alba E.; Berra, E. F.; Pereira, R. S. 2020. Machine learning and generalized linear model techniques to predict aboveground biomass in Amazon rainforest using LiDAR data. Journal of Applied Remote Sensing, 14, (3), 034518. https://doi.org/10.1117/1.JRS.14.034518

Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. pp. 517-524.

Silveira, E. M. D. O.; Cunha, L. I. F.; Galvão, L. S.; Withey, K. D.; Acerbi Júnior, F. W.; Scolforo, J. R. S. 2019. Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data. Geocarto International, 36, (3):281-298. https://doi.org/10.1080/10106049.2019.1594394

SOS Mata Atlântica; INPE. 2019. Relatório anual 2019. 29p.

Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsistsi, B. 2016. Remote sensing of aboveground forest biomass: A review. Tropical Ecology, 57, (2), 125-132.

Toledo, R. M.; Santos, R. F.; Baeten, L.; Perring, M. P.; Verheyen, K. 2018. Soil properties and neighbouring forest cover affect aboveground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 21, (2), 179-189. https://doi.org/10.1111/avsc.12363

Vieira, S. A.; Alves, L. F.; Duarte?Neto, P. J.; Martins, S. C.; Veiga, L. G.; Scaranello, M. A.; Picollo, M. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Santos, F. A. M.; Joly, C. A.; Martinelli, L. A. 2011. Stocks of carbon and nitrogen and partitioning between above?and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecology and Evolution, 1, (3), 421-434. https://doi.org/10.1002/ece3.41

Wilson, J. P.; Gallant, J. C. 2000. Book Review Terrain Analysis: Principles and Applications. Ecology Eng. John Wiley & Sons, Inc. vol. 18, pp. 121-122.

Xavier, A. C.; Vettorazzi, C. A. 2004. Mapping leaf area index through spectral vegetation indices in a subtropical watershed. International Journal of Remote Sensing, 25, (9), 1661-1672. https://doi.org/10.1080/01431160310001620803

Zhu, X.; Liu, D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102, (2015), 222-231. https://doi.org/10.1016/j.isprsjprs.2014.08.014

Zuñe-da-Silva, F.; Rodrigues, P. J. F. P., Rojas-Idrogo, C.; Delgado-Paredes, G. E.; Enrich-Prast, A.; Sakuragui, C. M. 2023. Tree structure and composition of a coastal remnant of the Atlantic Forest in Rio de Janeiro. Advances in Forestry Science, 10, (1), 1929-1940. https://doi.org/10.34062/afs.v10i1.13347

Published

2024-12-16

How to Cite

Zuñe, F., Rodrigues, P. J. F. P., Silva, N. G. da, Rojas-Idrogo, C., Delgado-Paredes, G. E., Enrich-Prast, A., & Sakuragui, C. M. (2024). Estimating tree aboveground biomass in an Atlantic Forest remnant using different modelling methods. Journal of Environmental Analysis and Progress, 9(4), 325–339. https://doi.org/10.24221/jeap.9.4.2024.6499.325-339