Estimating tree aboveground biomass in an Atlantic Forest remnant using different modelling methods
DOI:
https://doi.org/10.24221/jeap.9.4.2024.6499.325-339Keywords:
AGB, GLM, Random Forest, Remote sensingAbstract
The Atlantic Forest stores vast amounts of aboveground biomass (AGB), yet it is still a challenge to estimate these stocks. We aimed to predict the AGB stock of the largest biodiversity remnant of Serra da Tiririca State Park (Rio de Janeiro, Brazil) by comparing the accuracy of generalized linear models (GLM) and random forest (RF) models, using data from field plots, remote sensing, and environmental variables. The plots showed an AGB of 371.12 Mg/ha. The comparison between the modelling methods revealed that the GLM is more accurate, still the RF is also fit to estimate the AGB of the remnant. The most accurate GLM predicted an AGB of 405.31 Mg/ha. We observed that the accuracy of the models improved when all predictor variables were combined. This study allowed us to improve the AGB estimates, and produce an AGB map useful for the management and conservation of the remnantDownloads
References
Ali, A.; Lin, S. L.; He, J. K.; Kong, F. M.; Yu, J. H.; Jiang, H. S. 2019. Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests. Land Degradation & Development, 30, (8), 918-927. https://doi.org/10.1002/ldr.3278
Almeida, C. T.; Galvao, L. S.; Ometto, J. P. H. B.; Jacon, A. D.; Pereira, F. R. S.; Sato, L. Y.; Lopes, A. P.; Graça, P. M. L. A.; Silva, C. V. J.; Ferreira-Ferreira, J.; Longo, M. 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sensing of Environment, 232, (2019), 111323. https://doi.org/10.1016/j.rse.2019.111323
Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Gonçalves, J. L. M.; Sparovek, G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 2, (6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
Alves, L. F.; Vieira, A. S.; Scaranello, M. A.; Camargo, P. B.; Santos, F. A.; Joly, C. A.; Martinelli, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest ecology and management, 260, (5), 679-691. https://doi.org/10.1016/j.foreco.2010.05.023
Asner, G. P.; Hughes, R. F.; Varga, T. A; Knapp, D. E.; Kennedy-Bowdoin, T. 2009. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems, 12, (2), 261-278. https://doi.org/10.1007/s10021-008-9221-5
ABNT. Associação Brasileira de Normas Técnicas. 2003. Madeira: determinação da densidade básica: NBR 11941. Rio de Janeiro. 6p.
Avitabile, V.; Herold, M.; Heuvelink, G. B.; Lewis, S. L.; Phillips, O. L.; Asner, G. P.; Armston, J.; Ashton, P. S.; Banin, L.; Bayol, N.; Berry, N. J.; Boeckx, P.; Jong, B. H. J.; DeVries, B.; Girardin, C. A. J.; Kearsley, E.; Lindsell, J. A.; Lopez-Gonzalez, G.; Lucas, R.; Malhi, Y.; Morel, A.; Mitchard, E. T. A.; Nagy, L.; Qie, L. Quinones, M. J.; Ryan, C. M.; Slik, J. W.; Sunderland, T. F.; Laurin, G. V.; Gatti, R. C.; Valentini, R.; Verbeeck, H.; Wijaya, A.; Willcock, S. 2016. An integrated pan?tropical biomass map using multiple reference datasets. Global change biology, 22, (4), 1406-1420. https://doi.org/10.1111/gcb.13139
Barbosa, J. M.; Melendez-Pastor, I.; Navarro-Pedreño, J.; Bitencourt, M. D. 2014. Remotely sensed biomass over steep slopes: An evaluation among successional stands of the Atlantic Forest Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 88, (2014), 91-100. https://doi.org/10.1016/j.isprsjprs.2013.11.019
Barros, A. A. M. 2008. Análise florística e estrutural do Parque Estadual da Serra da Tiririca, Niterói e Maricá, RJ, Brasil. Tese de Doutorado. Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brasil. 225p.
Benitez, F. L.; Anderson, L. O.; Formaggio, A. R. 2016. Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data. Acta Amazonica, 46, (2), 151-160. https://doi.org/10.1590/1809-4392201501254
Breiman, L. 2001. Random forests. Machine learning, 45, (1), 5-32.
Burnham, K. P.; Anderson, D. R.; Huyvaert, K. P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral ecology and sociobiology, 65, (1), 23-35. https://doi.org/10.1007/s00265-010-1029-6
Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, (1443), 409-420. https://doi.org/10.1098/rstb.2003.1425
Chave, J. 2006. Measuring wood density for tropical forest trees: A field manual, Pan-Amazonia Project. 6p.
Chave, J.; Réjou?Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M. S.; Delitti, W. B. C; Duque, A.; Eid, T.; Fearnside, P. M.; Goodman, R. C.; Henry, M.; Martínez-Yrízar, A.; Mugasha, W. A.; Muller-Landau, H. C.; Mencuccini, M.; Nelson, B. W.; Ngomanda, A.; Nogueira, E. M.; Ortiz-Malavassi, E.; Pélissier, R.; Ploton, P.; Ryan, C. M.; Saldarriaga, J. G.; Vieilledent, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20, (10), 3177-3190. https://doi.org/10.1111/gcb.12629
Chave, J.; Davies, S. J.; Phillips, O. L.; Lewis, S. L..; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T. R.; Coomes, D.; Disney, M.; Duncanson, L.; Hérault, B.; Labrière, N.; Meyer, V.; Réjou-Méchain, M.; Scipal, K.; Saatchi, S. 2019. Ground data are essential for biomass remote sensing missions. Surveys in Geophysics, 40, (4), 63-880. https://doi.org/10.1007/s10712-019-09528-w
Chazdon, R. L. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, evolution and systematics, 6, (1-2), 51-71. https://doi.org/10.1078/1433-8319-00042
Congedo, L. 2016. Semi-automatic classification plugin documentation. Release, 4, (0.1), 29.
Cunha, G. D. M; Gama-Rodrigues, A. C.; Gama-Rodrigues, E. F.; Velloso, A. C. X. 2009. Biomassa e estoque de carbono e nutrientes em florestas montanas da Mata Atlântica na região norte do estado do Rio de Janeiro. Revista Brasileira de Ciência do Solo, 33, (5), 1175-1185. https://doi.org/10.1590/S0100-06832009000500011
Cutler, A.; Cutler, D. R.; Stevens, J. R. 2012. Random forests. In: Ensemble machine learning. Springer, Boston, MA. pp. 157-175.
Cysneiros, V. C.; Souza, F. C.; Gaui, T. D.; Pelissari, A. L.; Orso, G. A.; Machado, S. A.; Silveira-Filho, T. B. 2021. Integrating climate, soil and stand structure into allometric models: An approach of site-effects on tree allometry in Atlantic Forest. Ecological Indicators, 127, (2021), 107794. https://doi.org/10.1016/j.ecolind.2021.107794
David, H. C.; Araújo, E. J. G.; Morais, V. A.; Scolforo, J. R. S.; Marques, J. M.; Netto, S. P.; MacFarlane, D. W. 2017. Carbon stock classification for tropical forests in Brazil: Understanding the effect of stand and climate variables. Forest Ecology and Management, 404, (2017), 241-250. https://doi.org/10.1016/j.foreco.2017.08.044
Debastiani, A. B.; Moura, M. M.; Rex, F. E.; Sanquetta, C. R.; Corte, A. P. D.; Pinto, N. 2019. Regressões robusta e linear para estimativa de biomassa via imagem sentinel em uma floresta tropical. BIOFIX Scientific Journal, 4, (2), 81-87. https://doi.org/10.5380/biofix.v4i2.62922
Diniz, A. R.; Machado, D. L.; Pereira, M. G.; Balieiro, F. D. C.; Menezes, C. E. G. 2015. Biomassa, estoques de carbono e de nutrientes em estádios sucessionais da Floresta Atlântica, RJ. Embrapa Solos-Artigo em periódico indexado, 11p.
EMBRAPA. Empresa Brasileira de Agropecuária. 1997. Manual de métodos de análise de solo. Embrapa Solos, Rio de Janeiro. 212p.
EMBRAPA. Empresa Brasileira de Agropecuária. 2018. Sistema brasileiro de classificação de solos. 5a ed. Embrapa, Brasília. 353p.
Ferraz, A. S.; Soares, V. P.; Soares, C. P. B.; Ribeiro, C. A. A. S.; Binoti, D. H. B.; Leite, H. G. 2014. Estimativa do estoque de biomassa em um fragmento florestal usando imagens orbitais. Floresta e Ambiente, 21, (3), 286-296. https://doi.org/10.1590/2179-8087.052213
Fick, S. E.; Hijmans, R. J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, (12), 4302-4315. https://doi.org/10.1002/joc.5086
Gao, B. C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58, (3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
Gagliasso, D.; Hummel, S.; Temesgen, H. 2014. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area. Open Journal of Forestry, 4, (1), 42-48. https://doi.org/10.4236/ojf.2014.41008
Gasparri, N. I.; Parmuchi, M. G.; Bono, J.; Karszenbaum, H.; Montenegro, C. L. 2010. Assessing multi-temporal Landsat 7 ETM+ images for estimating aboveground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 74, (10), 1262-1270. https://doi.org/10.1016/j.jaridenv.2010.04.007
Goward S.; Arvidson T.; Williams D.; Faundeen J.; Irons J.; Franks S. 2006. Historical record of Landsat global coverage. Photogrammetric Engineering & Remote Sensing, 72, (10), 1155-1169. https://doi.org/10.14358/PERS.72.10.1155
Graser, A.; Mearns, B.; Mandel, A.; Ferrero, V. O.; Bruy, A. 2017. QGIS: Becoming a GIS power user. Packt Publishing Ltd. 818p
Guisan, A.; Weiss, S. B.; Weiss, A. D. 1999. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecology, 143, (1999), 107-122. https://doi.org/10.1023/A:1009841519580
Guisan, A.; Edwards Jr, T. C.; Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157, (2-3), 89-100. https://doi.org/10.1016/S0304-3800(02)00204-1
Hansen, M. C.; Potapov, P. V.; Moore, R.; Hancher, M.; Turubanova, S. A.; Tyukavina, A.; Thau, D.; Stehman, S. V.; Goetz, S. J.; Loveland, T. R.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C. O.; Townshend, J. R. G. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342, (6160), 850-853. https://doi.org/10.1126/science.12446
Hijmans, R. J. 2021. Geographic Data Analysis and Modeling [R package raster version 3.4-10].
Huete, A. A. 1998. Soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. Remote sensing of environment, 25, (1998), 295-309.
Huete, A.; Didan, K.; Miura, T.; Rodriguez, E. P.; Gao, X.; Ferreira, L. G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83, (1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Houghton, R. A. 2005. Aboveground Forest biomass and the global carbon balance. Global change biology, 11, (6), 945-958. https://doi.org/10.1111/j.1365-2486.2005.00955.x
INEA. Instituto Estadual do Ambiente. 2015. Plano de Manejo do Parque Estadual da Serra da Tiririca. Governo do Estado do Rio de Janeiro. 105p.
Kersten, R. A.; Galvão F. 2011. Suficiência amostral em inventários florísticos e fitossociológicos. In: Felfili, J. M. et al. Fitossociologia no Brasil: métodos e estudos de casos. Editora UFV. Viçosa, MG. pp. 156-173.
Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T. 2016. Caret: Classification and Regression Training (version 6.0-64).
Laurance, W. F.; Fearnside, P. M.; Laurance, S. G.; Delamonica, P.; Lovejoy, T. E.; Merona, J. M. R.; Chambers, J. Q.; Gascon, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 118, (1-3), 127-138. https://doi.org/10.1016/S0378-1127(98)00494-0
Laurance, W. F.; Camargo, J. L.; Fearnside, P. M.; Lovejoy, T. E.; Williamson, G. B.; Mesquit, R. C.; Meyer, C. F. J.; Bobrowiec, P. E. D.; Laurance, S. G. W. 2018. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 93, (1), 223-247. https://doi.org/10.1111/brv.12343
Li, Y.; Li, C.; Li, M.; Liu, Z. 2019. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests, 10, (12), 1073. https://doi.org/10.3390/f10121073
Liaw, A.; Wiener, M. 2002. Classification and regression by randomForest. R news, 2, (3), 18-22.
Lindner, A.; Sattler, D. 2012. Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro, Brazil. New Forests, 43, (3), 287-301. https://doi.org/10.1007/s11056-011-9281-9
Lopatin, J.; Dolos, K.; Hernández, H. J.; Galleguillos, M.; Fassnacht, F. E. 2016. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment, 173, (2016), 200-210. https://doi.org/10.1016/j.rse.2015.11.029
Lu, D.; Mausel, P.; Brond?zio, E.; Moran, E. 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198, (1-3), 149-167. https://doi.org/10.1016/j.foreco.2004.03.048
Lu, D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26, (12), 2509-2525. https://doi.org/10.1080/01431160500142145
Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran E. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9, (1), 63-105. https://doi.org/10.1080/17538947.2014.990526
Nascimento, H. E. M.; Laurance, W. F.; 2002. Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. Forest Ecology and Management, 168, (1-3), 311-321. https://doi.org/10.1016/S0378-1127(01)00749-6
Martins, S. C.; Sousa Neto, E.; Piccolo, M. C.; Almeida, D.; Camargo, P.; Carmo, J. B.; Porder, S.; Lins, R. S. M.; Martinelli, L. A. 2015. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic Forest of Southeast Brazil. Geoderma Regional, 5, (2015), 106-116. https://doi.org/10.1016/j.geodrs.2015.04.005
Mazzei, L.; Sist, P.; Ruschel, A.; Putz, F. E.; Marco, P.; Pena, W.; Ferreira, J. E. R. 2010. Aboveground biomass dynamics after reduced-impact logging in the Eastern Amazon. Forest Ecology and Management, 259, (3), 367-373. https://doi.org/10.1016/j.foreco.2009.10.031
McCullagh, P.; Nelder, J. A. 2019. Generalized linear models. Routledge. 532p. https://doi.org/10.1201/9780203753736
Medeiros, M. C. M. P. D.; Aidar, M. P. M. 2011. Structural variation and content of aboveground living biomass in an area of Atlantic Forest in the State of São Paulo, Brazil. Hoehnea, 38, (3), 413-428. https://doi.org/10.1590/S2236-89062011000300004
Meira Junior, M. S.; Pinto, J. R. R.; Ramos, N. O.; Miguel, E. P.; Gaspar, R. D. O.; Phillips, O. L. 2020. The impact of long dry periods on the aboveground biomass in a tropical forest: 20 years of monitoring. Carbon balance and management, 15, (12), 1-14. https://doi.org/10.1186/s13021-020-00147-2
Mitchard, E. T. A. 2018. The tropical forest carbon cycle and climate change. Nature, 559, (7715), 527-534. https://doi.org/10.1038/s41586-018-0300-2
Myers, N.; Mittermeier, R. A.; Mittermeier, C. G.; Fonseca, G. A.; Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, (6772), 853-858. https://doi.org/10.1038/35002501
Pan, Y.; Birdsey, R. A.; Fang, J.; Houghton, R.; Kauppi, P. E.; Kurz, W. A.; Phillips, O. L.; Shvidenko, A.; Lewis, S. L.; Canadell, J. G.; Ciais, P.; Jackson, R. B.; Pacala, S. W.; McGuire, A. D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333, (6045), 988-993. https://doi.org/10.1126/science.1201609
Poorter, L.; van der Sande, M. T.; Thompson, J.; Arets, E. J.; Alarcón, A.; Álvarez?Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; Bongers, F.; Carvalho, F. A.; Casanoves, F.; Cornejo-Tenorio, G.; Costa, F. R. C.; Castilho, C. V.; Duivenvoorden, J. F.; Dutrieux, L. P.; Enquist, B. J.; Fernández-Méndez, F.; Finegan, B.; Gormley, L. H. L.; Healey, J. R.; Hoosbeek, M. R.; Ibarra-Manríquez, G.; Junqueira, A. B.; Levis, C.; Licona, J. C.; Lisboa, L. S.; Magnusson, W. E.; Martínez-Ramos, M.; Martínez-Yrizar, A.; Martorano, L. G.; Maskell, L. C.; Mazzei, L.; Meave, J. A.; Mora, F.; Muñoz, R.; Nytch, C.; Pansonato, M. P.; Parr, T. W.; Paz, H.; Pérez-García, E. A.; Rentería, L. Y.; Rodríguez-Velazquez, J.; Rozendaal, D. M. A.; Ruschel, A. R.; Sakschewski, B.; Salgado-Negret, B.; Schietti, J.; Simões, M.; Sinclair, F. L.; Souza, P. F.; Souza, F. C.; Stropp, J.; Steege, H.; Swenson, N. G.; Thonicke, K.; Toledo, M.; Uriarte, M.; van der Hout, P.; Walker, P.; Zamora, N.; Peña-Claros, M. 2015. Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, (11), 1314-1328. https://doi.org/10.1111/geb.12364
Poorter, L.; Bongers, F.; Aide, T.M.; Zambrano, A. M. A.; Balvanera, P.; Becknell, J. M.; Boukili, V.; Brancalion, P. H. S.; Broadbent, E. N.; Chazdon, R. L.; Craven, D.; Almeida-Cortez, J. S.; Cabral, G. A. L.; Jong, B. H. J.; Denslow, J. S.; Dent, D. H.; DeWalt, S. J.; Dupuy, J. M; Durán, S. M.; Espírito-Santo, M. M.; Fandino, M. C.; César, R. G.; Hall, J. S.; Hernandez-Stefanoni, J. L.; Jakovac, C. C.; Junqueira, A. B.; Kennard, D.; Letcher, S. G.; Licona, J. C.; Lohbeck, M.; Marín-Spiotta, E.; Martínez-Ramos, M.; Massoca, P.; Meave, J. A.; Mesquita, R.; Mora, F.; Muñoz, R.; Muscarella, R.; Nunes, Y. R. F.; Ochoa-Gaona, S.; Oliveira, A. A.; Orihuela-Belmonte, E.; Peña-Claros, M.; Pérez-García, E. A.; Piotto, D.; Powers, J. S.; Rodríguez-Velázquez, J.; Romero-Pérez, I. E.; Ruíz, J.; Saldarriaga, J.G.; Sanchez-Azofeifa, A.; Schwartz, N. B.; Steininger, M. K.; Swenson, N. G.; Toledo, M.; Uriarte, M.; van Breugel, M.; van der Wal, H.; Veloso, M. D. M.; Vester, H. F. M.; Vicentini, A.; Vieira, I. C .G.; Vizcarra Bentos, T.; Williamson, G. B.; Rozendaal, D. M. A. 2016. Biomass resilience of Neotropical secondary forests. Nature, 530, (7589), 211-214. https://doi.org/10.1038/nature16512
Poorter, L.; van der Sande, M. T.; Arets, E. J.; Ascarrunz, N.; Enquist, B. J.; Finegan, B.; Licona, J. C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A.; Muñoz, R.; Nytch, C. J.; Oliveira, A. A.; Pérez-García, E. A.; Prado-Junior, J.; Rodríguez-Velázques, J.; Ruschel, A. R.; Salgado-Negret, B.; Schiavini, I.; Swenson, N. G.; Tenorio, E. A.; Thompson, J.; Toledo, M.; Uriarte, M.; van der Hout, P.; Zimmerman, J. K.; Peña-Claros, M. 2018. Biodiversity and climate determine the functioning of Neotropical forests. Global ecology and biogeography, 26, (12), 1423-1434. https://doi.org/10.1111/geb.12721
Powell, S. L.; Cohen, W. B.; Healey, S. P.; Kennedy, R. E.; Moisen, G. G.; Pierce, K. B.; Ohmann, J. L. 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114, (5), 1053-1068. https://doi.org/10.1016/j.rse.2009.12.018
QGIS. QGIS Development Team. 2021. QGIS Geographic Information System. Open Source Geospatial Found.
R Core Team. 2021. A Language and Environment for Statistical Computing.
Ren, H.; Zhou, G.; Zhang, F. 2018. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 209, (2018), 439-445. https://doi.org/10.1016/j.rse.2018.02.068
Riley, S. J.; DeGloria, S. D; Elliot, R. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, (1-4), 23-27.
Ripley, B.; Venables, B.; Bates, D. M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. 2013. Package ‘mass’. Cran r. 538:113-120.
Rio de Janeiro. 1991. Lei Estadual n° 1.901, de 29 de novembro de 1991. Dispõe sobre a criação do Parque Estadual da Serra da Tiririca e dá outras providencias.
Rolim, S. G.; Jesus, R. M.; Nascimento, H. E. M.; Couto, H. T. Z.; Chambers, J. C. 2005. Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia, 142, (2005), 238-246. https://doi.org/10.1007/s00442-004-1717-x
Rouse, J. W.; Haas, R. H.; Schell, J. A.; Deering, D. W.; Harlan, J. C. 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report. Greenbelt. 371p.
Saatchi, S. S.; Houghton, R. A.; Dos Santos Alvala, R. C.; Soares, J. V.; Yu, Y. 2007. Distribution of aboveground live biomass in the Amazon basin. Global change biology, 13, (4), 816-837. https://doi.org/10.1111/j.1365-2486.2007.01323.x
Saatchi, S. S.; Harris, N. L.; Brown, S.; Lefsky, M.; Mitchard, E. T; Salas, W.; Zutta, B. R.; Buermann, W.; Lewis, S. L.; Hagen, S.; Petrova, S.; White, L.; Silman, M.; More, A. 2011a. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the national academy of sciences, 108, (24), 9899-9904. https://doi.org/10.1073/pnas.101957610
Saatchi, S.; Marlier, M.; Chazdon, R. L.; Clark, D. B.; Russell, A. E. 2011b. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 115, (11), 2836-2849. https://doi.org/10.1016/j.rse.2010.07.015
Sanchez, M.; Pedroni, F.; Eisenlohr, P. V.; Oliveira-Filho, A. T. 2013. Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, southeastern Brazil, from near sea level to 1000 m of altitude. Flora-Morphology, Distribution, Functional Ecology of Plants, 208, (3), 184-196. https://doi.org/10.1016/j.flora.2013.03.002
Santos, E. B.; Pimentel, R. M. M.; Silva, M. D. 2023. Landscape Ecology applied to the study of the Atlantic Forest. Journal of Environmental Analysis and Progress, 8, (3), 184-189. https://doi.org/10.24221/jeap.8.3.2023.5427.184-189
Sakate, D. M.; Kashid, D. N. 2014. A deviance-based criterion for model selection in GLM. Statistics, 48, (1), 34-48. https://doi.org/10.1080/02331888.2012.708035
Sampaio, T. V. M.; Augustin, C. H. R. R. 2014. Índice de concentração da rugosidade: uma nova proposta metodológica para o mapeamento e quantificação da dissecação do relevo como subsídio a cartografia geomorfológica. Revista Brasileira de Geomorfologia, 15, (1), 47-60. https://doi.org/10.20502/rbg.v15i1.376
Silva, L. C.; Araújo, E. J. G.; Curto, R. A.; Nascimento, A. M.; Ataíde, D. H. dos S.; Morais, V. A. 2018. Estoques de biomassa e carbono em unidade de conservação no Bioma Mata Atlântica. BIOFIX Scientific Journal, 3, (2), 243-251. https://dx.doi.org/10.5380/biofix.v3i2.59592
Schuh, M.; Favarin, J. A. S.; Marchesan, J.; Alba E.; Berra, E. F.; Pereira, R. S. 2020. Machine learning and generalized linear model techniques to predict aboveground biomass in Amazon rainforest using LiDAR data. Journal of Applied Remote Sensing, 14, (3), 034518. https://doi.org/10.1117/1.JRS.14.034518
Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. pp. 517-524.
Silveira, E. M. D. O.; Cunha, L. I. F.; Galvão, L. S.; Withey, K. D.; Acerbi Júnior, F. W.; Scolforo, J. R. S. 2019. Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data. Geocarto International, 36, (3):281-298. https://doi.org/10.1080/10106049.2019.1594394
SOS Mata Atlântica; INPE. 2019. Relatório anual 2019. 29p.
Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsistsi, B. 2016. Remote sensing of aboveground forest biomass: A review. Tropical Ecology, 57, (2), 125-132.
Toledo, R. M.; Santos, R. F.; Baeten, L.; Perring, M. P.; Verheyen, K. 2018. Soil properties and neighbouring forest cover affect aboveground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 21, (2), 179-189. https://doi.org/10.1111/avsc.12363
Vieira, S. A.; Alves, L. F.; Duarte?Neto, P. J.; Martins, S. C.; Veiga, L. G.; Scaranello, M. A.; Picollo, M. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Santos, F. A. M.; Joly, C. A.; Martinelli, L. A. 2011. Stocks of carbon and nitrogen and partitioning between above?and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecology and Evolution, 1, (3), 421-434. https://doi.org/10.1002/ece3.41
Wilson, J. P.; Gallant, J. C. 2000. Book Review Terrain Analysis: Principles and Applications. Ecology Eng. John Wiley & Sons, Inc. vol. 18, pp. 121-122.
Xavier, A. C.; Vettorazzi, C. A. 2004. Mapping leaf area index through spectral vegetation indices in a subtropical watershed. International Journal of Remote Sensing, 25, (9), 1661-1672. https://doi.org/10.1080/01431160310001620803
Zhu, X.; Liu, D. 2015. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 102, (2015), 222-231. https://doi.org/10.1016/j.isprsjprs.2014.08.014
Zuñe-da-Silva, F.; Rodrigues, P. J. F. P., Rojas-Idrogo, C.; Delgado-Paredes, G. E.; Enrich-Prast, A.; Sakuragui, C. M. 2023. Tree structure and composition of a coastal remnant of the Atlantic Forest in Rio de Janeiro. Advances in Forestry Science, 10, (1), 1929-1940. https://doi.org/10.34062/afs.v10i1.13347
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Felipe Zuñe, Pablo José Francisco Pena Rodrigues, Nílber Gonçalves da Silva, Consuelo Rojas-Idrogo, Guillermo Eduardo Delgado-Paredes, Alex Enrich-Prast, Cássia Mônica Sakuragui
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author