Assessment of Finite Difference Models for Water Content Determination in Soils of the Semi-Arid Region of Brazil

Authors

  • Daniel Milian Pérez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-3172-0508
  • Abel Gámez Rodríguez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-1584-6768
  • Yaicel Ge Proenza Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-3894-8326
  • Frederico Dias Nunes Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-4040-8281
  • Antonio Celso Dantas Antonino Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-4120-9404
  • José Romualdo de Sousa Lima Universidade Federal do Agreste de Pernambuco (UFAPE), Av. Bom Pastor, s/n, Garanhuns, PE, Brasil. CEP: 55.292-278. https://orcid.org/0000-0001-9535-9208
  • Severino Martins dos Santos Neto Centro Acadêmico do Agreste – CAA, Universidade Federal de Pernambuco (UFPE), Nova Caruaru, Av. Marielle Franco, s/n, km 59, Caruaru, PE, Brasil. CEP: 55.014-900. https://orcid.org/0000-0003-2940-2129
  • Artur Paiva Coutinho Centro Acadêmico do Agreste – CAA, Universidade Federal de Pernambuco (UFPE), Nova Caruaru, Av. Marielle Franco, s/n, km 59, Caruaru, PE, Brasil. CEP: 55.014-900. https://orcid.org/0000-0002-0644-0037
  • Marcus Metri Correa Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-9506-8969

DOI:

https://doi.org/10.24221/jeap.9.4.2024.7361.309-324

Keywords:

Matric potential, Soil water content, Finite differences, Explicit method, Implicit method, Semi-Arid

Abstract

The water content in soil and its variation with depth are critical for numerous processes, significantly influencing plant growth, soil mechanics, and physical and chemical properties. In the semi-arid region of northeastern Brazil, where the Caatinga biome is located, accurate estimation of soil water content is crucial due to severe water scarcity and highly variable precipitation patterns. This study aimed to evaluate the sensitivity and accuracy of a computational model for predicting soil matric potential and water content. The model solves the Richards’ equation using three finite difference methods: explicit, implicit, and Crank-Nicolson. The methods were applied to three soil textures (sandy loam, silt, and clay), and a preliminary analysis was performed to identify the optimal time (dt) and spatial (dz) steps for achieving relative differences below 1%. The model predicted acceptable behavior for soil matric potential and water content, particularly for sandy loam, which required finer steps (1 second, 1 cm) compared to silt and clay (10 seconds, 5 cm). Two test cases from the literature were used for further validation. Finally, the model was applied to soil textures typical of northeastern Brazil, confirming its ability to capture the dynamics of soil water content in this region. The results highlight the applicability of this computational approach to semi-arid soils, contributing to improved water management and crop production strategies.

Downloads

Download data is not yet available.

References

Althoff, D.; Rodrigues, L. N.; Silva, D. D. 2021. Addressing hydrological modeling in watersheds under land cover change with deep learning. Advances in Water Resources, 154, 103965. https://doi.org/10.1016/j.advwatres.2021.103965

Arioli, M.; Scott, J. 2014. Chebyshev acceleration of iterative refinement. Numerical Algorithms, 66, (3), 591-608. https://doi.org/10.1007/s11075-013-9750-7

Assouline, S.; Sela, S.; Dorman, M.; Svoray, T. 2024. Runoff generation in a semiarid environment: The role of rainstorm intra-event temporal variability and antecedent soil moisture. Advances in Water Resources, 188, 104715. https://doi.org/10.1016/j.advwatres.2024.104715

Bittelli, M.; Campbell, G. S.; Tomei, F. 2015. Soil Physics with Python. In Soil Physics with Python. Oxford University Press. 460p. https://doi.org/10.1093/acprof:oso/9780199683093.001.0001

Brito, T. R.; Lima, J. R. D. S.; Oliveira, C. L.; Souza, R. M. S.; Antonino, A. C. D.; Medeiros, E. V.; Souza, E. S.; Alves, E. M. 2020. Mudanças no Uso da Terra e Efeito nos Componentes do Balanço Hídrico no Agreste Pernambucano. Revista Brasileira de Geografia Física, 13, (2), 870-886. https://doi.org/10.26848/rbgf.v13.2.p870-886

Carsel, R. F.; Parrish, R. S. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24, (5), 755-769. https://doi.org/10.1029/WR024i005p00755

Celia, M. A.; Bouloutas, E. T.; Zarba, R. L. 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26, (7), 1483-1496. https://doi.org/10.1029/WR026i007p01483

Chapra, S. C.; Canale, R. P. 2016. Metodos Numericos para Ingenieros. McGraw-Hill, Seventh Edition. 864p.

Chavarria, G.; Santos, H. P. 2012. Plant Water Relations: Absorption, Transport and Control Mechanisms. In Advances in Selected Plant Physiology Aspects. InTech. 29p. https://doi.org/10.5772/33478

Cirilo, J. A. 2008. Políticas públicas de recursos hídricos para o semi-árido. Estudos Avançados, 22, (63), 61-82. https://doi.org/10.1590/S0103-40142008000200005

Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F. F. 2020. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621. https://doi.org/10.1016/j.jhydrol.2020.125621

Farthing, M. W.; Ogden, F. L. 2017. Numerical Solution of Richards’ Equation: A Review of Advances and Challenges. Soil Science Society of America Journal, 81, (6), 1257-1269. https://doi.org/10.2136/sssaj2017.02.0058

Fredlund, D. G.; Xing, A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, (4), 521-532. https://doi.org/10.1139/t94-061

Hillel, D. 1998. Environmental soil physics. Academic Press, First Edition. 771p.

Leal, I. R.; Silva, J. M. C.; Tabarelli, M.; Lacher, T. E. 2005. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19, (3), 701-706. https://doi.org/10.1111/j.1523-1739.2005.00703.x

List, F.; Radu, F. A. 2016. A study on iterative methods for solving Richards’ equation. Computational Geosciences, 20, (2), 341-353. https://doi.org/10.1007/s10596-016-9566-3

Liu, F.; Qian, H.; Wang, G.; Gao, Y.; Shi, Z. 2024. New insights into the parameterization of the dry surface layer and its hydrogeochemical mechanism: An experimental study. Advances in Water Resources, 190, 104738. https://doi.org/10.1016/j.advwatres.2024.104738

Lott, P. A.; Walker, H. F.; Woodward, C. S.; Yang, U. M. 2012. An accelerated Picard method for nonlinear systems related to variably saturated flow. Advances in Water Resources, 38, 92-101. https://doi.org/10.1016/j.advwatres.2011.12.013

Miranda, J. H.; Duarte, S. N.; Libardi, P. L.; Folegatti, M. V. 2005. Simulação do deslocamento de potássio em colunas verticais de solo não-saturado. Engenharia Agrícola, 25, (3), 677-685. https://doi.org/10.1590/S0100-69162005000300013

Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, (3), 513-522. https://doi.org/10.1029/WR012i003p00513

Shukla, P. R.; Skea, J.; Buendia, E. C.; Masson-Delmotte, V.; Pörtner, H. O.; Roberts, D. C.; Zhai, P.; Slade, R.; Connors, S.; Diemen, R.; Ferrat, M.; Haughey, E.; Luz, S.; Neogi, S.; Pathak, M.; Petzold, J.; Pereira, J. P.; Vyas, P.; Huntley, E.; … Malley, J. 2019. Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Disponível em: https://www.ipcc.ch/srccl

PBMC. 2014. Painel Brasileiro de Mudanças Climáticas. Base científica das mudanças climáticas. Volume 1 - Primeiro Relatório de Avaliação Nacional. Disponível em: https://repositorio.mctic.gov.br/handle/mctic/4306

Pedrozo, H. A.; Rosenberger, M. R.; Schvezov, C. E. 2015. Comparison of Finite Difference Models Applied to Soil Infiltration. RECyT, 17, (23), 36-44.

Pedrozo, H. A.; Rosenberger, M. R.; Schvezov, C. E. 2016. Stability analysis of the solution of the one-dimensional Richards equation by the finite difference method. AIP Conference Proceedings, 1738, 480008. https://doi.org/10.1063/1.4952244

Rad, A. M.; Ghahraman, B.; Khalili, D.; Ghahremani, Z.; Ardakani, S. A. 2017. Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. Advances in Water Resources, 107, 336-353. https://doi.org/10.1016/j.advwatres.2017.07.007

Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1, (5), 318-333. https://doi.org/10.1063/1.1745010

Schneider, R. 2003. Explicit and Implicit Finite-Difference Methods for the Diffusion Equation in Two Dimensions. Forschungszentrum Karlsruhe GmbH, Karlsruhe. Disponível em: https://www.osti.gov/etdeweb/biblio/20414585

Sishodia, R. P.; Shukla, S.; Graham, W. D.; Wani, S. P.; Jones, J. W.; Heaney, J. 2017. Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed. Advances in Water Resources, 110, 459-475. https://doi.org/10.1016/j.advwatres.2017.05.014

Soares, W. A.; Silva, S. R.; Lima, J. R. 2020. Land-use change effect on the hydro-dynamic characteristics of soil in the Brazilian semi-arid region. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 15, (2), e2368. https://doi.org/10.4136/ambi-agua.2368

Genuchten, M. T. 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44, (5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Vasconcellos, C. A.; Amorin, J. C. 2001. Numerical Simulation of Unsaturated Flow in Porous Media Using a Mass-Conservative Model. 16th Brazilian Congress of Mechanical Engineering, Uberlândia, Brasil.

Vieira, R. M. S. P.; Tomasella, J.; Alvalá, R. C. S.; Sestini, M. F.; Affonso, A. G.; Rodriguez, D. A.; Barbosa, A. A.; Cunha, A. P. M. A.; Valles, G. F.; Crepani, E.; Oliveira, S. B. P.; Souza, M. S. B.; Calil, P. M.; Carvalho, M. A.; Valeriano, D. M.; Campello, F. C. B.; Santana, M. O. 2015. Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth, 6, (1), 347-360. https://doi.org/10.5194/se-6-347-2015

Wendland, E.; Pizarro, M. L. P. 2010. Modelagem computacional do fluxo unidimensional de água em meio não saturado do solo. Engenharia Agrícola, 30, (3), 424-434. https://doi.org/10.1590/S0100-69162010000300007

Wu, L.; He, B.; Peng, J. 2024. Analysis of Rainfall-Caused Seepage into Underlying Bedrock Slope Based on Seepage Deformation Coupling. International Journal of Geomechanics, 24, (5), 04024076. https://doi.org/10.1061/IJGNAI.GMENG-9175

Zhu, S. R.; Wu, L. Z.; Shen, Z. H.; Huang, R. Q. 2019. An improved iteration method for the numerical solution of groundwater flow in unsaturated soils. Computers and Geotechnics, 114, 103113. https://doi.org/10.1016/j.compgeo.2019.103113

Downloads

Published

2024-12-13

How to Cite

Pérez, D. M., Rodríguez, A. G., Proenza, Y. G., Nunes, F. D., Antonino, A. C. D., Lima, J. R. de S., Santos Neto, S. M. dos, Coutinho, A. P., & Correa, M. M. (2024). Assessment of Finite Difference Models for Water Content Determination in Soils of the Semi-Arid Region of Brazil. Journal of Environmental Analysis and Progress, 9(4), 309–324. https://doi.org/10.24221/jeap.9.4.2024.7361.309-324