X-Ray Computed Tomography for Estimating Density and Porosity in Reservoir Analogous Rocks: A Study on Laminated Limestones from the Crato Formation

Authors

  • Frederico Veiga Ribeiro Gonçalves Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-2386-9705
  • Daniel Milian Pérez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-3172-0508
  • Abel Gámez Rodríguez Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-1584-6768
  • Yaicel Ge Proenza Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-3894-8326
  • Daniel Amancio Duarte Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-3368-910X
  • Márcio Fernando Paixão de Brito Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-7644-1035
  • Cássia Bezerra Machado Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0001-9993-0678
  • Raquel Milani Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0001-8076-6118
  • Daiane Francisca do Nascimento Silva Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-1057-7335
  • Frederico Dias Nunes Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0003-4040-8281
  • Jose Antonio Barbosa Departamento de Geologia, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Avenida Arquitetura, 100, Recife, PE, Brasil. CEP: 50.740-550. https://orcid.org/0000-0001-8754-6310
  • Igor Fernandes Gomes Departamento de Engenharia Civil, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Avenida Arquitetura, 100, Recife, PE, Brasil. CEP: 50.740-550. https://orcid.org/0000-0003-2474-383X
  • Antonio Celso Dantas Antonino Departamento de Energia Nuclear, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, Av. Professor Luiz Freire 1000, Recife, PE, Brasil. CEP: 50.740-545. https://orcid.org/0000-0002-4120-9404

DOI:

https://doi.org/10.24221/jeap.9.4.2024.7364.340-355

Keywords:

X-ray computed tomography, laminated carbonate, Crato Formation, density, porosity

Abstract

In recent decades, faster and more affordable methods for characterizing reservoir rocks in environmental and geological studies have gained importance, particularly for hydrocarbon exploration and resource management. One promising method is X-Ray Computed micro-Tomography (XR-?CT), enabling non-destructive analysis of rock properties. However, this technique presents challenges related to image interpretation, property characterization below the voxel scale, and result comparison across configurations. In this study, laminated limestones from the Crato Formation, analogs to the pre-salt Barra Velha Formation, were analyzed using XR-?CT to estimate density and porosity. These rocks serve as substitutes for actual reservoir conditions, addressing the challenge of limited subsurface samples. This study assessed the feasibility of XR-?CT for characterizing these properties and understanding the impact of millimeter-scale laminations on their distribution. Calibration values for calcite, the primary mineral, were used to ensure accuracy and repeatability. The results demonstrate that XR-?CT is a viable tool for environmental and geological characterization. Laminations due to stratification influenced porosity distribution in the axial direction, with higher concentrations in certain sections of the samples. The porosity values calculated using XR-?CT align relatively well with the gas porosimetry results, with most samples showing a relative difference of less than 10%. However, exceptions were observed in LM4 and T10.2, where the relative difference reached -15.90% and -12.80%, respectively. Despite these challenges, qualitative analysis was achieved. The study highlights the necessity of accounting for mineralogy and calibration in XR-?CT to ensure reliable comparisons across different tomographic systems, enhancing the method’s applicability in environmental and geological studies.

Downloads

Download data is not yet available.

References

Abelha M.; Petersohn E. 2019. The State of the Art of the Brazilian Pre-Salt Exploration. AAPG Prospect and Property Expo. Available at: https://www.gov.br/anp/pt-br/centrais-de-conteudo/apresentacoes-palestras/2019/arquivos/2019/abelha_marina_brazilian-pre-salt_appex_2019mar6.pdf

Alencar, M. L.; Miranda, T. S.; Correia Filho, O. J.; Barbosa, J. A.; Gomes, I. F.; Ramos, G. M. S.; Araújo, A. F. L.; Topan, J. G. de O.; Celestino, M. A. L.; Neumann, V. H. 2024. The effect of fracture networks on the vertical permeability of a tight carbonate reservoir analogue: laminites from the Crato Formation, NE Brazil. Marine and Petroleum Geology, 162, 106735. https://doi.org/10.1016/j.marpetgeo.2024.106735

Bezerra, F. I.; Mendes, M. 2024. A palaeoecological analysis of the Cretaceous (Aptian) insect fauna of the Crato Formation, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 641, 112134. https://doi.org/10.1016/j.palaeo.2024.112134

Busch, B.; Spitzner, A. D.; Adelmann, D.; Hilgers, C. 2022. The significance of outcrop analog data for reservoir quality assessment: A comparative case study of Lower Triassic Buntsandstein sandstones in the Upper Rhine Graben. Marine and Petroleum Geology, 141, 105701. https://doi.org/10.1016/j.marpetgeo.2022.105701

Cnudde, V.; Boone, M. N. 2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1-17. https://doi.org/10.1016/j.earscirev.2013.04.003

Silva, V. R.; Varejão, F. G.; Matos, S. A.; Rodrigues, M. G.; Warren, L. V.; Assine, M. L.; Fürsich, F. T.; Simões, M. G. 2024. A new condensed freshwater-brackish water bivalve-dominated assemblage in the Aptian Crato Formation, Araripe Basin, NE Brazil and its paleoenvironmental significance. Cretaceous Research, 154, 105748. https://doi.org/10.1016/j.cretres.2023.105748

DCI Test Systems. Helium Porosimeter. Available at: https://www.dcitestsystems.com/helium-porosimeter.html. Access at: 01/09/2024.

Carvalho, M. G. P.; Maisey, J. G.; Mendes, I. D.; Souza C. I. 2023. Micro-tomographic analysis of a scorpion fossil from the Aptian Crato Formation of Northeastern Brazil. Cretaceous Research, 147, 105454. https://doi.org/10.1016/j.cretres.2022.105454

Dou, L.; Wen, Z.; Wang, Z.; He, Z.; Song, C.; Chen, R.; Yang, X.; Liu, X.; Liu, Z.; Chen, Y. 2024. Sedimentary build-ups of pre-salt isolated carbonate platforms and formation of deep-water giant oil fields in Santos Basin, Brazil. Petroleum Exploration and Development, 51, (4), 949-962. https://doi.org/10.1016/S1876-3804(24)60517-3

Fox, A.; Basrani, B.; Kishen, A.; Lam, E. W. N. 2018. A Novel Method for Characterizing Beam Hardening Artifacts in Cone-beam Computed Tomographic Images. Journal of Endodontics, 44, (5), 869-874. https://doi.org/10.1016/j.joen.2018.02.005

Gurjão, K. G. R.; Soares, J. A.; Figueiredo, A. N. 2013. Petrophysics of carbonatic and evaporitic rocks from Araripe Basin. 13th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil. https://doi.org/10.1190/sbgf2013-235

Hai, W.; Xue, Q.; Wang, M.; He, Y. 2024. Parameter optimization based on deepwater drilling system simulation: A pre-salt exploration well in Brazil. Geoenergy Science and Engineering, 241, 213120. https://doi.org/10.1016/j.geoen.2024.213120

Heimhofer, U.; Ariztegui, D.; Lenniger, M.; Hesselbo, S. P.; Martill, D. M.; Rios-Netto, A. M. 2010. Deciphering the depositional environment of the laminated Crato fossil beds (Early Cretaceous, Araripe Basin, North-eastern Brazil). Sedimentology, 57, (2), 677-694. https://doi.org/10.1111/j.1365-3091.2009.01114.x

Herlinger, R.; Vidal, A. C. 2022. X-ray ?Ct extracted pore attributes to predict and understand Sor using ensemble learning techniques in the Barra Velha Pre-salt carbonates, Santos Basin, Offshore Brazil. Journal of Petroleum Science and Engineering, 212, 110282. https://doi.org/10.1016/j.petrol.2022.110282

Islam, A.; Chevalier, S.; Sassi, M. 2018. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography. Computers & Geosciences, 113, 14-22. https://doi.org/10.1016/j.cageo.2018.01.008

Neves Junior, A.; Queiroz, G. N.; Godoy, M. G.; Cardoso, V. S.; Cedrola, S. M. L.; Mansoldo, F. R. P.; Firpo, R. M.; Paiva, L. M.; Sohrabi, M.; Vermelho, A. B. 2023. Assessing EOR strategies for application in Brazilian pre-salt reservoirs. Geoenergy Science and Engineering, 223, 211508. https://doi.org/10.1016/j.geoen.2023.211508

Kadyrov, R.; Statsenko, E.; Nguyen, T. H. 2024. Integrating ?CT imaging of core plugs and transfer learning for automated reservoir rock characterization and tomofacies identification. Marine and Petroleum Geology, 168, 107014. https://doi.org/10.1016/j.marpetgeo.2024.107014

Ketcham, R. A.; Carlson, W. D. 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27, (4), 381-400. https://doi.org/10.1016/S0098-3004(00)00116-3

Korpics, M.; Surucu, M.; Mescioglu, I.; Alite, F.; Block, A. M.; Choi, M.; Emami, B.; Harkenrider, M. M.; Solanki, A. A.; Roeske, J. C. 2016. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images. International Journal of Radiation Oncology, Biology, Physics, 96, (4), 897-904. https://doi.org/10.1016/j.ijrobp.2016.07.028

Liu, C.; Buono, G.; Pappalardo, L.; Shan, X.; Yi, J.; Shi, Y.; Ventura, G. 2023. X-ray computed microtomography revealing the effects of volcanic, alteration, and burial processes on the pore structure of rocks from unconventional reservoirs (Songliao Basin, NE China). Geoenergy Science and Engineering, 226, 211781. https://doi.org/10.1016/j.geoen.2023.211781

Liu, Q.; Sun, M.; Sun, X.; Liu, B.; Ostadhassan, M.; Huang, W.; Chen, X.; Pan, Z. 2023. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review. Gas Science and Engineering, 113, 204967. https://doi.org/10.1016/j.jgsce.2023.204967

Lv, J.; Zhao, J.; Jiang, L.; Liu, Y.; Mu, H. 2020. A review of micro computed tomography studies on the gas hydrate pore habits and seepage properties in hydrate bearing sediments. Journal of Natural Gas Science and Engineering, 83, 103555. https://doi.org/10.1016/j.jngse.2020.103555

Martyushev, D. A.; Ponomareva, I. N.; Chukhlov, A. S.; Davoodi, S.; Osovetsky, B. M.; Kazymov, K. P.; Yang, Y. 2023. Study of void space structure and its influence on carbonate reservoir properties: X-ray microtomography, electron microscopy, and well testing. Marine and Petroleum Geology, 151, 106192. https://doi.org/10.1016/j.marpetgeo.2023.106192

Michael, A. 2024. Transparent gelatin as a reservoir analogue: Dimensional scaling for hydraulic fracturing laboratory experiments. International Journal of Rock Mechanics and Mining Sciences, 177, 105732. https://doi.org/10.1016/j.ijrmms.2024.105732

Miranda, T. S.; Santos, R. F.; Barbosa, J. A.; Gomes, I. F.; Alencar, M. L.; Correia, O. J.; Falcão, T. C.; Gale, J. F. W.; Neumann, V. H. 2018. Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil. Marine and Petroleum Geology, 97, 556-567. https://doi.org/10.1016/j.marpetgeo.2018.07.019

Nel, A.; Ribeiro, G. C. 2024. New fossil wings shed light on Lower Cretaceous Araripechlorogomphidae and minimum age of the Chlorogomphoidea (Odonata: Anisoptera): Crato formation, Araripe Basin, NE Brazil. Cretaceous Research, 156, 105811. https://doi.org/10.1016/j.cretres.2023.105811

Pak, T.; Archilha, N. L.; Berg, S.; Butler, I. B. 2023. Design considerations for dynamic fluid flow in porous media experiments using X-ray computed micro tomography – A review. Tomography of Materials and Structures, 3, 100017. https://doi.org/10.1016/j.tmater.2023.100017

Pilotto, D.; Zanella, R.; Magnavita, L.; Stanton, N.; Oliveira, J. P.; Borghi, L. 2024. The Espadarte transfer zone: Structural architecture and kinematics of an oblique basement high controlling pre-salt geometry in south Campos basin, SE Brazil. Journal of South American Earth Sciences, 143, 105012. https://doi.org/10.1016/j.jsames.2024.105012

Rossoni, R. B.; Porcher, C. C.; Koester, E.; Sobiesiak, J. S.; Silva, L. A. C.; Mexias, A. S.; Gomes, M. E. B.; Ramnani, C. W.; De Ros, L. F. 2024. The role of compaction in the diagenetic evolution of Pre-Salt Aptian deposits of Santos Basin, Brazil. Sedimentary Geology, 466, 106650. https://doi.org/10.1016/j.sedgeo.2024.106650

Santos, R. F. V. C.; Miranda, T. S.; Barbosa, J. A.; Gomes, I. F.; Matos, G. C.; Gale, J. F. W.; Neumann, V. H. L. M.; Guimaraes, L. J. N. 2015. Characterization of natural fracture systems: Analysis of uncertainty effects in linear scanline results. AAPG Bulletin, 99, (12), 2203-2219. https://doi.org/10.1306/05211514104

Shukla, A.; Sahoo, S.; Sarkar, P. 2024. Assessment of micro-structure and flow entrapment in Indian Gondwana shale reservoir using digital rock analysis. Marine and Petroleum Geology, 169, 107066. https://doi.org/10.1016/j.marpetgeo.2024.107066

Soares, J. A.; Garcia, A. J. V.; Bezerra, F. H. R.; Barbosa, J. A.; Friedrich, A.; Cazarin, C. L.; Tabosa, L. D. G.; Coura, R. L. C. 2015. Petrophysics and Rockphysics of Carbonates from Brazil and Portugal. 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, pp. 882-887. https://doi.org/10.1190/sbgf2015-173

Storari, A. P.; Rodrigues, T.; Bantim, R. A. M.; Lima, F. J.; Saraiva, A. A. F. 2021. Mass mortality events of autochthonous faunas in a Lower Cretaceous Gondwanan Lagerstätte. Scientific Reports, 11, (1), 6976. https://doi.org/10.1038/s41598-021-85953-5

Taguchi, K.; Khaled, A. 2009. Artifacts in Cardiac Computed Tomographic Images. Journal of the American College of Radiology, 6, (8), 590-593. https://doi.org/10.1016/j.jacr.2009.05.001

Teles, A. P.; Machado, A. C.; Pepin, A.; Bize-Forest, N.; Lopes, R. T.; Lima, I. 2016. Analysis of subterranean Pre-salt carbonate reservoir by X-ray computed microtomography. Journal of Petroleum Science and Engineering, 144, 113–120. https://doi.org/10.1016/j.petrol.2016.03.008

Valencia-Gómez, J. C.; Cardona, A.; Zapata, S.; Monsalve, G.; Marín, D.; Rodríguez-Cuevas, M.; Sobel, E. R.; Parra, M.; Glodny, J. 2024. Fracture analysis and low-temperature thermochronology of faulted Jurassic igneous rocks in the Southern Colombian Andes: Reservoir and tectonic implications. Marine and Petroleum Geology, 165, 106850. https://doi.org/10.1016/j.marpetgeo.2024.106850

Vital, J. C. S.; Ade, M. V. B.; Morelatto, R.; Lupinacci, W. M. 2023. Compartmentalization and stratigraphic-structural trapping in pre-salt carbonate reservoirs of the Santos Basin: A case study in the Iara complex. Marine and Petroleum Geology, 151, 106163. https://doi.org/10.1016/j.marpetgeo.2023.106163

Volume Graphics GmbH. 2020. VGSTUDIO MAX 3.4 Reference Manual. Available at: https://www.volumegraphics.com/en/products/vgsm.html

Wang, M.; Yang, S.; Li, J.; Zheng, Z.; Wen, J.; Ma, Q.; Wang, Q.; Chen, H. 2021. Cold water-flooding in a heterogeneous high-pour-point oil reservoir using computerized tomography scanning: Characteristics of flow channel and trapped oil distribution. Journal of Petroleum Science and Engineering, 202, 108594. https://doi.org/10.1016/j.petrol.2021.108594

Wellington, S. L.; Vinegar, H. J. 1987. X-ray computerized tomography. Journal of Petroleum Technology, 39, (8), 885-898. https://doi.org/10.1016/0308-9126(90)92264-2

Xie, L.; You, Q.; Wang, E.; Li, T.; Song, Y. 2022. Quantitative characterization of pore size and structural features in ultra-low permeability reservoirs based on X-ray computed tomography. Journal of Petroleum Science and Engineering, 208, 109733. https://doi.org/10.1016/j.petrol.2021.109733

Zhu, J. B.; Zhou, T.; Liao, Z. Y.; Sun, L.; Li, X. B.; Chen, R. 2018. Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography. International Journal of Rock Mechanics and Mining Sciences, 106, 198-212. https://doi.org/10.1016/j.ijrmms.2018.04.022

eservoir rock characterization and tomofacies identification. Marine and Petroleum Geology, 168, 107014. https://doi.org/10.1016/j.marpetgeo.2024.107014

Ketcham, R. A., & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27(4), 381–400. https://doi.org/10.1016/S0098-3004(00)00116-3

Korpics, M., Surucu, M., Mescioglu, I., Alite, F., Block, A. M., Choi, M., Emami, B., Harkenrider, M. M., Solanki, A. A., & Roeske, J. C. (2016). Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images. International Journal of Radiation Oncology*Biology*Physics, 96(4), 897–904. https://doi.org/10.1016/j.ijrobp.2016.07.028

Liu, C., Buono, G., Pappalardo, L., Shan, X., Yi, J., Shi, Y., & Ventura, G. (2023). X-ray computed microtomography revealing the effects of volcanic, alteration, and burial processes on the pore structure of rocks from unconventional reservoirs (Songliao Basin, NE China). Geoenergy Science and Engineering, 226, 211781. https://doi.org/10.1016/j.geoen.2023.211781

Liu, Q., Sun, M., Sun, X., Liu, B., Ostadhassan, M., Huang, W., Chen, X., & Pan, Z. (2023). Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: A review. Gas Science and Engineering, 113, 204967. https://doi.org/10.1016/j.jgsce.2023.204967

Lv, J., Zhao, J., Jiang, L., Liu, Y., & Mu, H. (2020). A review of micro computed tomography studies on the gas hydrate pore habits and seepage properties in hydrate bearing sediments. Journal of Natural Gas Science and Engineering, 83, 103555. https://doi.org/10.1016/j.jngse.2020.103555

Marina Abelha, & Eliane Petersohn. (2019). The State of the Art of the Brazilian Pre-Salt Exploration. AAPG Prospect and Property Expo.

Martyushev, D. A., Ponomareva, I. N., Chukhlov, A. S., Davoodi, S., Osovetsky, B. M., Kazymov, K. P., & Yang, Y. (2023). Study of void space structure and its influence on carbonate reservoir properties: X-ray microtomography, electron microscopy, and well testing. Marine and Petroleum Geology, 151, 106192. https://doi.org/10.1016/j.marpetgeo.2023.106192

Michael, A. (2024). Transparent gelatin as a reservoir analogue: Dimensional scaling for hydraulic fracturing laboratory experiments. International Journal of Rock Mechanics and Mining Sciences, 177, 105732. https://doi.org/10.1016/j.ijrmms.2024.105732

Miranda, T. S., Santos, R. F., Barbosa, J. A., Gomes, I. F., Alencar, M. L., Correia, O. J., Falcão, T. C., Gale, J. F. W., & Neumann, V. H. (2018). Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil. Marine and Petroleum Geology, 97, 556–567. https://doi.org/10.1016/j.marpetgeo.2018.07.019

Nel, A., & Ribeiro, G. C. (2024). New fossil wings shed light on Lower Cretaceous Araripechlorogomphidae and minimum age of the Chlorogomphoidea (Odonata: Anisoptera): Crato formation, Araripe Basin, NE Brazil. Cretaceous Research, 156, 105811. https://doi.org/10.1016/j.cretres.2023.105811

Pak, T., Archilha, N. L., Berg, S., & Butler, I. B. (2023). Design considerations for dynamic fluid flow in porous media experiments using X-ray computed micro tomography – A review. Tomography of Materials and Structures, 3, 100017. https://doi.org/10.1016/j.tmater.2023.100017

Pilotto, D., Zanella, R., Magnavita, L., Stanton, N., Oliveira, J. P., & Borghi, L. (2024). The Espadarte transfer zone: Structural architecture and kinematics of an oblique basement high controlling pre-salt geometry in south Campos basin, SE Brazil. Journal of South American Earth Sciences, 143, 105012. https://doi.org/10.1016/j.jsames.2024.105012

Rossoni, R. B., Porcher, C. C., Koester, E., Sobiesiak, J. S., da Silva, L. A. C., Mexias, A. S., Gomes, M. E. B., Ramnani, C. W., & De Ros, L. F. (2024). The role of compaction in the diagenetic evolution of Pre-Salt Aptian deposits of Santos Basin, Brazil. Sedimentary Geology, 466, 106650. https://doi.org/10.1016/j.sedgeo.2024.106650

Santos, R. F. V. C., Miranda, T. S., Barbosa, J. A., Gomes, I. F., Matos, G. C., Gale, J. F. W., Neumann, V. H. L. M., & Guimaraes, L. J. N. (2015). Characterization of natural fracture systems: Analysis of uncertainty effects in linear scanline results. AAPG Bulletin, 99(12), 2203–2219. https://doi.org/10.1306/05211514104

Shukla, A., Sahoo, S., & Sarkar, P. (2024). Assessment of micro-structure and flow entrapment in Indian Gondwana shale reservoir using digital rock analysis. Marine and Petroleum Geology, 169, 107066. https://doi.org/10.1016/j.marpetgeo.2024.107066

Soares, J. A., Garcia, A. J. V., Bezerra, F. H. R., Barbosa, J. A., Friedrich, A., Cazarin, C. L., Tabosa, L. D. G., & Coura, R. L. C. (2015). Petrophysics and Rockphysics of Carbonates from Brazil and Portugal. 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015, 882–887. https://doi.org/10.1190/sbgf2015-173

Storari, A. P., Rodrigues, T., Bantim, R. A. M., Lima, F. J., & Saraiva, A. A. F. (2021). Mass mortality events of autochthonous faunas in a Lower Cretaceous Gondwanan Lagerstätte. Scientific Reports, 11(1), 6976. https://doi.org/10.1038/s41598-021-85953-5

Taguchi, K., & Khaled, A. (2009). Artifacts in Cardiac Computed Tomographic Images. Journal of the American College of Radiology, 6(8), 590–593. https://doi.org/10.1016/j.jacr.2009.05.001

Teles, A. P., Machado, A. C., Pepin, A., Bize-Forest, N., Lopes, R. T., & Lima, I. (2016). Analysis of subterranean Pre-salt carbonate reservoir by X-ray computed microtomography. Journal of Petroleum Science and Engineering, 144, 113–120. https://doi.org/10.1016/j.petrol.2016.03.008

Valencia-Gómez, J. C., Cardona, A., Zapata, S., Monsalve, G., Marín, D., Rodríguez-Cuevas, M., Sobel, E. R., Parra, M., & Glodny, J. (2024). Fracture analysis and low-temperature thermochronology of faulted Jurassic igneous rocks in the Southern Colombian Andes: Reservoir and tectonic implications. Marine and Petroleum Geology, 165, 106850. https://doi.org/10.1016/j.marpetgeo.2024.106850

Vital, J. C. dos S., Ade, M. V. B., Morelatto, R., & Lupinacci, W. M. (2023). Compartmentalization and stratigraphic-structural trapping in pre-salt carbonate reservoirs of the Santos Basin: A case study in the Iara complex. Marine and Petroleum Geology, 151, 106163. https://doi.org/10.1016/j.marpetgeo.2023.106163

Volume Graphics GmbH. (2020). VGSTUDIO MAX 3.4 Reference Manual.

Wang, M., Yang, S., Li, J., Zheng, Z., Wen, J., Ma, Q., Wang, Q., & Chen, H. (2021). Cold water-flooding in a heterogeneous high-pour-point oil reservoir using computerized tomography scanning: Characteristics of flow channel and trapped oil distribution. Journal of Petroleum Science and Engineering, 202, 108594. https://doi.org/10.1016/j.petrol.2021.108594

Wellington, S. L., & Vinegar, H. J. (1987). X-ray computerized tomography. Journal of Petroleum Technology, 39(8), 885–898. https://doi.org/10.1016/0308-9126(90)92264-2

Xie, L., You, Q., Wang, E., Li, T., & Song, Y. (2022). Quantitative characterization of pore size and structural features in ultra-low permeability reservoirs based on X-ray computed tomography. Journal of Petroleum Science and Engineering, 208, 109733. https://doi.org/10.1016/j.petrol.2021.109733

Zhu, J. B., Zhou, T., Liao, Z. Y., Sun, L., Li, X. B., & Chen, R. (2018). Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography. International Journal of Rock Mechanics and Mining Sciences, 106, 198–212. https://doi.org/10.1016/j.ijrmms.2018.04.022

Published

2024-12-16

How to Cite

Gonçalves, F. V. R., Pérez, D. M., Rodríguez, A. G., Proenza, Y. G., Duarte, D. A., Brito, M. F. P. de, Machado, C. B., Milani, R., Silva, D. F. do N., Nunes, F. D., Barbosa, J. A., Gomes, I. F., & Antonino, A. C. D. (2024). X-Ray Computed Tomography for Estimating Density and Porosity in Reservoir Analogous Rocks: A Study on Laminated Limestones from the Crato Formation. Journal of Environmental Analysis and Progress, 9(4), 340–355. https://doi.org/10.24221/jeap.9.4.2024.7364.340-355