Predição e seleção indireta da massa de grãos da panícula de aveia branca em ambientes com e sem adubação
DOI:
https://doi.org/10.24221/jeap.10.4.2025.8058.233-243Keywords:
Avena sativa, Agronomic traits, Plant breeding, Grain yield, Logistic regressionAbstract
Indirect plant selection can be enhanced by easily measured traits correlated with traits of interest. This study aimed to determine whether panicle grain weight can be predicted using easily measured agronomic traits in environments with and without fertilization. Logistic regression analysis was used to evaluate the performance of predictive models in the indirect selection of white oat plants for greater panicle grain weight. Plant height, panicle insertion height, panicle length, panicle weight, panicle grain number, and panicle grain weight were evaluated for 570 white oat plants. Pearson's correlation and partial correlation were performed between the traits. Simple and multiple stepwise forward linear regression were applied to predict NGP and MGP. Logistic regression with cross-validation was used to assess the accuracy rate of plants selected under selection pressures (5 to 50%), considering the regression models developed. Panicle grain weight can be predicted using panicle weight, with a coefficient of determination equal to or greater than 0.93, regardless of the presence or absence of fertilization. White oat plants with greater panicle grain weight can be selected simply by weighing the panicle, without the need for threshing, achieving accuracy greater than 85% at selection pressures equal to or greater than 20%, and over 90% at pressures equal to or greater than 35%, regardless of the presence or absence of fertilization.Downloads
References
Alessi, O.; Mantai, R. D.; Silva, J. A. G.; Bárta, R. L.; Pansera, V.; Kraisig, A. R.; Berlezi, J. D.; Matter, E. M. 2021. Regressão linear múltipla envolvendo variáveis biológicas e ambientais na simulação de indicadores da composição química de grãos de aveia. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 8, 010469-1-010469-7. https://doi.org/10.5540/03.2021.008.01.0469
Bazzer, S. K.; Oliveira, G.; Fiedler, J. D.; Nandety, R. S.; Jannink, J. L.; Caffe, M. 2025. Genomic strategies to facilitate breeding for increased ?-Glucan content in oat (Avena sativa L.). BMC Genomics, 26, 26-35. https://doi.org/10.1186/s12864-024-11174-5
Borém, A.; Miranda, G. V.; Fritsche-Neto, R. 2021. Melhoramento de plantas. 384p.
Cruz, C. D.; Regazzi, A. J.; Carneiro, P. C. S. 2014. Modelos biométricos aplicados ao melhoramento genético. 668p.
Roza, J. P. D.; Carvalho, I. R.; Pradebon, L. C.; Loro, M. V.; Sangiovo, J. P.; Bruisma, G. M. W.; Silva, J. A. G. 2024. Genetic dissimilarity and agronomic performance of mutant and recombinant white oat progênies, 23, 554-564. https://doi.org/10.5965/223811712342024554
De Cól, M.; Coelho, M.; Del Ponte, E.?M. 2024. Weather?Based Logistic Regression Models for Predicting Wheat Head Blast Epidemics. Plant Disease, 108, (11), 2206?2213. https://doi.org/10.1094/pdis-11-23-2513-re
Fernandes, A. A. T.; Figueiredo Filho, D. B.; Rocha, E. C.; Nascimento, W. S. 2020. Leia este artigo se você quiser aprender regressão logística. Revista de Sociologia e Política, 28, (74), 1-20. https://doi.org/10.1590/1678-987320287406en
Kuhn, M. 2008. Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28, (5), 1-26. https://doi.org/10.18637/jss.v028.i05
Kurek, A. J.; Carvalho, F. I. F.; Oliveira, A. C.; Cargnin, A.; Marchioro, V. S.; Lorencetti, C. 2002. Coeficiente de correlação entre caracteres agronômicos e de qualidade do grão e sua utilidade na seleção de plantas em aveia. Ciência Rural, 32, (3), 371-376. https://doi.org/10.1590/S0103-84782002000300002
Loro, M. V.; Carvalho, I.; Megiolaro Junior, G. L.; Pradebon, L. C.; Sangiovo, J. P.; Roza, J. P. D.; Bandeira, W. J. A. 2024. Relationships between agronomic traits and characterization of the white oat ideotype for cultivation with and without chemical fertilization. Revista Thema, 23, (2), 532-544, https://doi.org/10.15536/thema.V23.2024.532-544.3621
Mantai, R. D.; Silva, J. A. G.; Binelo, M. O.; Sausen, A. T. Z. R.; Rossi, D. S.; Corso, J. S. 2020. Nitrogen management in the relationships between oat inflorescence components and productivity. Brazilian Journal of Agricultural and Environmental Engineering, 24, 385-393. https://doi.org/10.1590/1807-1929/agriambi.v24n6p385-393
Meira, D.; Meier, C.; Olivoto, T.; Follmann, D. N.; Rigatti, A.; Lunkes, A.; Marchioro, V. S.; Souza, V. Q. 2019. Multivariate analysis revealed genetic divergence and promising traits for indirect selection in black oat. Brazilian Journal of Agricultural Sciences, 14, 1-7. https://doi.org/10.5039/agraria.v14i4a6514
Nick, T. G.; Campbell, K. M. 2007. Logistic regression. Topics in Biostatistics, 404, 273-301, 2007. https://doi.org/10.1007/978-1-59745-530-5_14
Pansera, V.; Silva, J. A. G.; Alessi, O.; Basso, N. C. F. 2022. Dose and form of nitrogen supply in the relationship dynamics of wheat ear components with yield in cropping systems. Genetics and Molecular Research, 21, (2), GMR19024036.
Pereira, L. B.; Machado, D. S.; Alves Filho, D. C. A.; Brondani, I. L.; Adams, S. M.; Silva, M. B.; Cocco, J. M.; Maidana, F. M.; Klein, J. L.; Volpatto, R. S. 2024. Substitution of corn grain with white oat grain in non-forage diets for feedlot beef cattle. Brazilian Journal of Animal Science, 53, e20230138. https://doi.org/10.37496/rbz5320230138
Pradebon, L. C.; Carvalho, I. R.; Silva, J. A. G.; Loro, M. V.; Roza, J. P. D. 2025. White oat progenies based on the agronomic ideotype due to response to environmental stimulus. Ciência Rural, 55, (3), e20230195. http://doi.org/10.1590/0103-8478cr20230195
R core team. 2025 R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponível em: https://www.R-project.org
Schmidt, A. L.; Carvalho, I. R.; Pradebon, L. C.; Silva, J. A. G.; Loro, M. V.; Sfalcin. I. C.; Donadel, P. E.; Segatto, T. A.; Alban, A. A.; Challiol, M. A. 2023. Organic system and reflections on white oat grain productivity components. Agronomy Science and Biotechnology, 9, 1-12. https://doi.org/10.33158/ASB.r188.v9.2023
Silva, E. L.; Secco, D.; Marins, A. C.; Bassegio, D.; Castro, M. B. S. 2022. Soil physical characteristics and corn grain yield as a function of cover crops. Research, Society and Development, 11, (1), e21511124823. https://doi.org/10.33448/rsd-v11i1.24823
Silva, J. A. G.; Carvalho, I. R.; Magano, D. A. (Org.). 2022. A cultura da aveia: da semente ao sabor de uma espécie multifuncional. 404p.
Silveira, D. C.; Basso, S. M. S.; Ebone, L. A.; Caverzan, A.; Machado, J. M.; Schaeffer, A. H.; Folchini, J. A.; Lângaro, N. C. 2021. Morphological traits of stem to indirect selection of resistance to lodging in Avena sativa L. Journal of Crop Science and Biotechnology, 25, 39-50. https://doi.org/10.1007/s12892-021-00111-7
Treter, R. J. R.; Furlan, R. D. P.; Carvalho, I. R.; Pradebon, L. C.; Sangiovo, J. P.; Sfalcin, I. C.; Loro, M. V.; Silva, J. A. G.; Alban, A. A.; Challiol, M. A.; Ferreira, L. L. 2023. Agronomic performance of white oats in organic system in the northwest region of Rio Grande do Sul. Agronomy Science and Biotechnology, 9, (1), 1-11. https://doi.org/10.33158/ASB.r189.v9.2023
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag. 260p. https://doi.org/10.1007/978-3-319-24277-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Paola Notargiacomo Ceolin, Murilo Vieira Loro, Ivan Ricardo Carvalho, Diovana Thays Schlösser, Dani Antonini Bromberger, Angélica Guareschi, Vitória Larrosa Bueno, Pedro Henrique Pereira Nunes

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author

