Temporal variation affecting zooplankton in freshwater rock pools
DOI:
https://doi.org/10.24221/jeap.9.1.2024.6645.024-037Palavras-chave:
Diversity, ecological drivers, evenness, seasonal dynamics, species abundanceResumo
Most ecological studies have focused on one snapshot in a single location and the same taxonomic group. However, relatively few studies have explored different taxonomic groups across different periods, particularly in ephemeral Neotropical ecosystems. This study investigates the seasonal dynamics of zooplankton communities and their responses to environmental variables in temporary pools in the Seasonally Dry Forest Ecosystem, Pernambuco, Brazil. We examined the seasonal fluctuations in species abundance, diversity, and evenness of Cladocera, Copepoda, and Rotifera in five temporary rock pools. Although these pools are meters apart, they vary considerably in size and drought sensitivity, leading to distinct seasonal dynamics mediated by water availability. We asked (i) how species abundance, diversity, and evenness vary seasonally? (ii) How do water environmental variables and spatial distance of pools influence zooplankton species composition? (iii) Do these seasonal shifts differ between Cladocera, Copepoda, and Rotifera? We hypothesized that the rainy period positively influences Cladocera and Copepoda, while Rotifera is more common in the post-rainy and dry periods. Our findings underscore seasonality as the main driver influencing the abundance and composition of zooplankton communities. We observed that seasonality affected only Cladocera and Rotifera, but Copepoda was not affected. These differences among groups highlight the importance of considering biological differences when understanding the ecological drivers of temporary freshwater ecosystems. We reinforced the relevance of investigating the effects of seasonality on the species abundance, diversity, and evenness of zooplankton, especially compared with extreme conditions such as the wet and dry seasons.Downloads
Referências
Abrantes, N.; Antunes, S. C.; Pereira, M. J.; Gonçalves, F. 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica, 29, 54-64. https://doi.org/10.1016/j.actao.2005.07.006
Allan, J. D. 1976. Life history patterns in zooplankton. The American Naturalist, 110, 971, 165-180. https://www.jstor.org/stable/2459885
Anderson, M. J.; Walsh, D. C. I. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83, 557-574. https://doi.org/10.1890/12-2010.1
Bonecker, C. C.; Lansac-Tôha, F. A.; Velho, L. F. M.; Rossa, D. C. 2001. The temporal distribution pattern of copepods in Corumbá Reservoir, State of Goiás, Brazil. In: Lopes, R. M.; Reid, J. W.; Rocha, C. E. F. (Eds.). Copepoda: Developments in Ecology, Biology and Systematics. Springer Netherlands, Dordrecht, pp. 375-384. https://doi.org/10.1007/0-306-47537-5_31
Borcard, D.; Legendre, P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68. https://doi.org/10.1016/S0304-3800(01)00501-4
Brendonck, L.; Jocque, M.; Hulsmans, A.; Vanschoenwinkel, B. 2010. Pools ‘on the rocks’: Freshwater rock pools as model system in ecological and evolutionary research. Limnetica, 29, 25-40. https://doi.org/10.23818/limn.29.03
Brendonck, L.; Pinceel, T.; Ortells, R. 2017. Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia, 796, 201-222. https://doi.org/10.1007/s10750-016-3006-1
Campos, C. C.; Barroso, H. de S.; Belmonte, G.; Rossi, S.; Soares, M. O.; Garcia, T. M. 2022. Copepod assemblages at the base of mangrove food webs during a severe drought. Water, 14, 3648. https://doi.org/10.3390/w14223648
Casanova, S. M. C.; Panarelli, E. A.; Henry, R. 2009. Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil). Limnologica, 39, 292-301. https://doi.org/10.1016/j.limno.2009.06.008
Castilho-Noll, M. S. M.; Perbiche-Neves, G.; Santos, N. G.; Schwind, L. T. F.; Lansac-Tôha, F. M.; Silva, A. C. S. D.; Meira, B. R. D.; Joko, C. Y.; Morais-Júnior, C. S.; Silva, E. E. C.; Eskinazi-Sant’Anna, E. M.; Oliveira, F. R.; Santos, G. D. S.; Silva, J. V. F. D.; Portinho, J. L.; Araujo-Paina, K.; Chiarelli, L. J.; Diniz, L. P.; Braghin, L. D. S. M.; Velho, L. F. M.; Souza, M. E. T. D.; Silva, M. L. C. D.; Rocha, M. A.; Progênio, M.; Ferreira, N.; Cirillo, P. H.; Morari, P. H. R.; Arrieira, R. L.; Mantovano, T.; Gazulha, V.; Melo, V. L. D. S. A. D.; Ghidini, A. R.; Melo Júnior, M. D.; Lansac-Tôha, F. A.; Bonecker, C. C.; Simões, N. R. 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica, 100, 126057. https://doi.org/10.1016/j.limno.2023.126057
Cottenie, K.; De Meester, L. 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology, 85, 114-119. https://doi.org/10.1890/03-3004
Cottenie, K.; Nuytten, N.; Michels, E.; De Meester, L. 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia, 442, 339-350. https://doi.org/10.1023/A:1017505619088
Cottenie, K.; Michels, E.; Nuytten, N.; De Meester, L. 2003. Zooplankton metacommunity structure: Regional vs. Local processes in highly interconnected ponds. Ecology, 84, 991–1000. https://doi.org/10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2
De Senerpont Domis, L. N.; Elser, J. J.; Gsell, A. S.; Huszar, V. L. M.; Ibelings, B. W.; Jeppesen, E.; Kosten, S.; Mooij, W. M.; Roland, F.; Sommer, U.; Van Donk, E.; Winder, M.; Lürling, M. 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58, 463–482. https://doi.org/10.1111/fwb.12053
Diniz, L. P.; Elmoor-Loureiro, L. M. A.; Almeida, V. L. D. S.; Melo Júnior, M. D. 2013. Cladocera (Crustacea, Branchiopoda) of a temporary shallow pond in the Caatinga of Pernambuco, Brazil. Nauplius, 21, 65-78. https://doi.org/10.1590/S0104-64972013000100008
Dodson, S. I.; Everhart, W. R.; Jandl, A. K.; Krauskopf, S. J. 2007. Effect of watershed land use and lake age on zooplankton species richness. Hydrobiologia, 579, 393-399. https://doi.org/10.1007/s10750-006-0392-9
Dray, S.; Bauman, D.; Blanchet, G.; Borcard, D.; Clappe, S.; Guénard, G.; Jombart, T.; Larocque, G.; Legendre, P.; Madi, N.; Wagner, H. H. 2023. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-23. https://CRAN.R-project.org/package=adespatial.
Dray, S.; Legendre, P.; Peres-Neto, P. R. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483-493. https://doi.org/10.1016/j.ecolmodel.2006.02.015
Elmoor-Loureiro, L. M. A. 1997. Manual de identificac?a?o de clado?ceros li?mnicos do Brasil. Editora Universa, Universidade Cato?lica de Brasi?lia, Taguatinga, DF. 156p.
Elmoor-Loureiro, L. M. A.; Sousa, F. D. R.; Oliveira, F. R.; Joko, C. Y.; Perbiche-Neves, G.; Silva, A. C. S.; Silva, A. J.; Ghidini, A. R.; Meira, B. R.; Aggio, C. E. G.; Morais-Junior, C. S.; Eskinazi-Sant’Anna, E. M.; Lansac-Tôha, F. M.; Cabral, G. S.; Portinho, J. L.; Nascimento, J. R.; Silva, J. V. F.; Veado, L.; Chiarelli, L. J.; Santana, L. O.; Diniz, L. P.; Braghin, L. S. M.; Schwind, L. T. F.; Melo Júnior, M.; Progênio, M.; Rocha, M. A.; Silva, M.L.C.; Castilho-Noll, M.S.M.; Silva, N. J.; dos Santos, N. G.; Morari, P.H.R.; Maia-Barbosa, P. M.; Oliveira, P. M.; Arrieira, R. L.; Macêdo, R. L.; Deosti, S.; Mantovano, T.; Gazulha, V.; Bonecker, C. C.; Lansac-Tôha, F. A.; Corgosinho, P. H. C.; Velho, L. F. M.; Simões, N. R. 2023. Towards a synthesis of the biodiversity of freshwater protozoa, rotifera, cladocera, and copepoda in brazil. Limnologica, 100, 126008. https://doi.org/10.1016/j.limno.2022.126008
Eskinazi-Sant’Anna, E. M.; Santos, G. D. S.; Alves, N. J. D. S.; Brito, L. A. F.; Leite, M. G. P. 2020. The relative importance of regional and local factors in shaping zooplankton diversity in high-altitude tropical shallow lakes. Journal of Freshwater Ecology, 35, 203-221. https://doi.org/10.1080/02705060.2020.1770874
Ferijal, T.; Batelaan, O.; Shanafield, M.; Alfahmi, F. 2022. Determination of rainy season onset and cessation based on a flexible driest period. Theoretical and Applied Climatology, 148, 91-104. https://doi.org/10.1007/s00704-021-03917-1
Ferreira, N.; Omena, P. M. D.; Gonçalves-Souza, T.; Cottenie, K.; Melo Júnior, M. D. 2022. Water availability and quality determine temporal synchrony and beta diversity of microcrustaceans in temporary pools. Freshwater Science, 41, 226-235. https://doi.org/10.1086/719947
Fischer, S.; Marinone, M. C.; Soledad Fontanarrosa, M.; Nieves, M.; Schweigmann, N. 2000. Urban rain pools: Seasonal dynamics and entomofauna in a park of Buenos Aires. Hydrobiologia, 441, 45–53. https://doi.org/10.1023/A:1017591122911
Florencio, M.; Fernández-Zamudio, R.; Lozano, M.; Díaz-Paniagua, C. 2020. Interannual variation in filling season affects zooplankton diversity in Mediterranean temporary ponds. Hydrobiologia, 847, 1195–1205. https://doi.org/10.1007/s10750-019-04163-3
Freiry, R. F.; Gouvea, A.; Becker, J.; Lansac-Tôha, F. A.; Lansac-Tôha, F. M.; Pires, M. M.; Stenert, C.; Maltchik, L. 2020. Community structure and concordance patterns among zooplankton life stages in subtropical temporary ponds. Aquatic Ecology, 54, 257-270. https://doi.org/10.1007/s10452-019-09740-1
García, P. R.; Nandini, S.; Sarma, S. S. S.; Valderrama, E. R.; Cuesta, I.; Hurtado, M. D. 2002. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia, 467, 99-108. https://doi.org/10.1023/A:1014953119507
Geraldes, A. M.; Boavida, M. -J. 2007. Zooplankton assemblages in two reservoirs: one subjected to accentuated water level fluctuations, the other with more stable water levels. Aquatic Ecology, 41, 273-284. https://doi.org/10.1007/s10452-006-9057-z
Govaert, L.; Gilarranz, L. J.; Altermatt, F. 2021. Competition alters species’ plastic and genetic response to environmental change. Scientific Reports, 11, 23518. https://doi.org/10.1038/s41598-021-02841-8
Hartig, F. 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa.
Heneghan, R. F.; Everett, J. D.; Blanchard, J. L.; Sykes, P.; Richardson, A. J. 2023. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nature Climate Change, 13, 470-477. https://doi.org/10.1038/s41558-023-01630-7
Hulsmans, A.; Vanschoenwinkel, B.; Pyke, C.; Riddoch, B. J.; Brendonck, L. 2008. Quantifying the Hydroregime of a Temporary Pool Habitat: A Modelling Approach for Ephemeral Rock Pools in SE Botswana. Ecosystems, 11, 89-100. https://doi.org/10.1007/s10021-007-9110-3
Humphries, P.; Baldwin, D. S. 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology, 48, 1141-1146. https://doi.org/10.1046/j.1365-2427.2003.01092.x
I?k?n, U.; Filiz, N.; Cao, Y.; Neif, E. M.; Ö?lü, B.; Lauridsen, T. L.; Davidson, T. A.; Søndergaard, M.; Tav?ano?lu, Ü. N.; Beklio?lu, M.; Jeppesen, E. 2020. Impact of Nutrients, Temperatures, and a Heat Wave on Zooplankton Community Structure: An Experimental Approach. Water, 12, 3416. https://doi.org/10.3390/w12123416
Jocque, M.; Vanschoenwinkel, B.; Brendonck, L. 2010. Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology, 55, 1587-1602. https://doi.org/10.1111/j.1365-2427.2010.02402.x
Katkov, E.; Fussmann, G. F. 2023. The effect of increasing temperature and pCO2 on experimental pelagic freshwater communities. Limnology & Oceanography, 68, S202-S216. https://doi.org/10.1002/lno.12344
Keppeler, E. C.; Hardy, E. R. 2004. Abundance and composition of Rotifera in an abandoned meander lake (Lago Amapá) in Rio Branco, Acre, Brazil. Revista Brasileira de Zoologia, 21, 233-241.
Khan, Q.; Khan, M. 2008. Effect of temperature on waterflea Daphnia magna (Crustacea: Cladocera). Nature Precedings, 11p. https://doi.org/10.1038/npre.2008.1909.1
Kobari, T.; Nagaki, T.; Takahashi, K. 2004. Seasonal changes in abundance and development of calanus pacificus (Crustacea: Copepoda) in the oyashio? Kuroshio mixed region. Marine Biology, 144, 713–721. https://doi.org/10.1007/s00227-003-1244-z
Kobayashi, T.; Bayly, I. A. E.; Shiel R. J.; Miskiewicz, A. G. 2019. Freshwater zooplankton: diversity and biology. In: Suthers, I. M.; Rissik, D.; Richardson, A. J. (Eds.). Plankton: a guide to their ecology and monitoring for water quality, 2 ed., CSIRO Publishing, Clayton South. pp. 119-139.
Koste, W.; Shiel, R. 1987. Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera : Monogononta). Invertabrate Systematics, 1, 949. https://doi.org/10.1071/IT9870949
Lansac-Tôha, F. A.; Bonecker, C. C.; Velho, L. F. M.; Simões, N. R.; Dias, J. D.; Alves, G. M.; Takahashi, E. M. 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology, 69, 539-549. https://doi.org/10.1590/S1519-69842009000300009
Li, Y.; Liu, L.; Cui, S.; Chen, F. 2019. Long-term effects of nutrient changes on rotifer communities in a subtropical lake. Limnology, 20, 191-201. https://doi.org/10.1007/s10201-018-0567-x
Louette, G.; De Meester, L. 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86, 353-359. https://doi.org/10.1890/04-0403
Luc, B.; Jocque, M.; Hulsmans, A.; Vanschoenwinkel, B. 2010. Pools ‘on the rocks’: freshwater rock pools as model system in ecological and evolutionary research. Limnetica, 29, 25-40. https://doi.org/10.23818/limn.29.03
Magurran, A. E. 2004. Measuring biological diversity. Blackwell Pub, Malden, Ma.
Manickam, N.; Bhavan, P. S.; Santhanam, P.; Bhuvaneswari, R.; Muralisankar, T.; Srinivasan, V.; Asaikkutti, A.; Rajkumar, G.; Udayasuriyan, R.; Karthik, M. 2018. Impact of seasonal changes in zooplankton biodiversity in Ukkadam Lake, Coimbatore, Tamil Nadu, India, and potential future implications of climate change. The Journal of Basic and Applied Zoology, 79, 15. https://doi.org/10.1186/s41936-018-0029-3
Mantzouki, E.; Beklio?lu, M.; Brookes, J. D.; Domis, L. N. de S.; Dugan, H. A.; Doubek, J. P.; Grossart, H. -P.; Nejstgaard, J. C.; Pollard, A. I.; Ptacnik, R.; Rose, K. C.; Sadro, S.; Seelen, L.; Skaff, N. K.; Teubner, K.; Weyhenmeyer, G. A.; Ibelings, B. W. 2018. Snapshot Surveys for Lake Monitoring, More Than a Shot in the Dark. Frontiers in Ecology and Evolution, 6, 201. https://doi.org/10.3389/fevo.2018.00201
McArdle, B. H.; Anderson, M. J. 2001. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology, 82, 290-297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
Morais-Junior, C. S.; Melo-Júnior, M.; Gonçalves-Souza, T.; Lyra-Neves, R. M. 2019. Zoochory of zooplankton: Seasonality and bird morphological diversity can influence metacommunity dynamics of temporary ponds. Journal of Plankton Research, 41, (4), 465-477. https://doi.org/10.1093/plankt/fbz028
Oksanen, J.; Simpson, G. L.; Blanchet, F. G.; Kindt, R.; Legendre, P.; Minchin, P. R.; et al. 2022. vegan: Community Ecology Package version 2.6-4. https://CRAN.R-project.org/package=vegan
Panarelli, E. A.; Nogueira, M. G.; Henry, R. 2001. Short-term variability of copepod abundance in Jurumirim Reservoir, São Paulo, Brazil. Brazilian Journal of Biology, 61, 577-598. https://doi.org/10.1590/S1519-69842001000400007
Papa, R. D. S.; Zafaralla, M. T.; Eckmann, R. 2011a. Spatio-temporal variation of the zooplankton community in a tropical caldera lake with intensive aquaculture (Lake Taal, Philippines). Hydrobiologia, 664, 119-133. https://doi.org/10.1007/s10750-010-0591-2
Papa, R. D. S.; Zafaralla, M. T. 2011b. The Composition, diversity and community dynamics of limnetic zooplankton in a tropical Caldera Lake (Lake Taal, Philippines). Raffles Bulletin of Zoology, 59, 1, 1-7. https://lkcnhm.nus.edu.sg/wp-content/uploads/sites/10/app/uploads/2017/06/59rbz001-007.pdf
Pearman, P. B. 1995. Effects of pond size and consequent predator density on two species of tadpoles. Oecologia, 102, 1-8. https://doi.org/10.1007/BF00333303
Perbiche-Neves, G.; Boxshall, G. A.; Previattelli, D.; Nogueira, M. G.; Rocha, C. E. F. 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). Zookeys, 497, 1-111. https://doi.org/10.3897/zookeys.497.8091
Picapedra, P. H. D. S.; Fernandes, C.; Baumgartner, G. 2019. Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera and Copepoda) in highland streams in southern Brazil. Acta Limnologica Brasilica, 31, e5. https://doi.org/10.1590/s2179-975x2917
R Core Team 2023. _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
Reid, J. W. 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia, 9, 17. https://doi.org/10.11606/issn.2526-3358.bolzoo.1985.122293
Rettig, J. E.; Schuman, L. S.; McCloskey, J. K. 2006. Seasonal Patterns of Abundance: Do Zooplankton in Small Ponds do the Same Thing Every Spring-Summer? Hydrobiologia, 556, 193-207. https://doi.org/10.1007/s10750-005-1278-y
Rietzler, A. C.; Matsumura-Tundisi, T.; Tundisi, J. G. 2002. Life cycle, feeding and adaptive strategy implications on the co-occurrence of Argyrodiaptomus furcatus and Notodiaptomus iheringi in Lobo-Broa Reservoir (SP, Brazil). Brazilian Journal of Biology, 62, 93-105. https://doi.org/10.1590/S1519-69842002000100012
Seebens, H.; Straile, D.; Hoegg, R.; Stich, H. -B.; Einsle, U. 2007. Population dynamics of a freshwater calanoid copepod: Complex responses to changes in trophic status and climate variability. Limnology & Oceanography, 52, 2364-2372. https://doi.org/10.4319/lo.2007.52.6.2364
Sheffield, J.; Wood, E. F. 2012. Drought: past problems and future scenarios, First Edition. Routledge. 248p. https://doi.org/10.4324/9781849775250
Simões, N. R.; Nunes, A. H.; Dias, J. D.; Lansac-Tôha, F. A.; Velho, L. F. M.; Bonecker C. C. 2015. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia, 758, 3-17. https://doi.org/10.1007/s10750-015-2260-y
Simões, N. R.; Braghin, L. S. M.; Duré, G. A. V.; Santos, J. S.; Sonoda, S. L.; Bonecker, C. C. 2020. Changing taxonomic and functional ?-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia, 847, (18), 3845-3856. https://doi.org/10.1007/s10750-020-04234-w
Simões, N. R.; Sonoda, S. L.; Ribeiro, S. M. M. S. 2008. Spatial and seasonal variation of microcrustaceans (Cladocera and Copepoda) in intermittent rivers in the Jequiezinho River Hydrographic Basin, in the Neotropical semiarid. Acta Limnologica Brasiliensia, 20, 197-204.
Sinclair, J. S.; Arnott, S. E. 2018. Local context and connectivity determine the response of zooplankton communities to salt contamination. Freshwater Biology, 63, 1273-1286. https://doi.org/10.1111/fwb.13132
Suthers, I. M.; Richardson, A. J.; Rissik, D. 2019. The importance of plankton. In: Suthers, I. M.; Rissik, D.; Richardson, A. J. (Eds.). Plankton: a guide to their ecology and monitoring for water quality, 2 ed., CSIRO Publishing, Clayton South. pp. 1-19.
Vanschoenwinkel, B.; Hulsmans, A.; De Roeck, E.; De Vries, C.; Seaman, M.; Brendonck, L. 2009. Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime. Freshwater Biology, 54, 1487-1500. https://doi.org/10.1111/j.1365-2427.2009.02198.x
Weather Spark. Available at: https://pt.weatherspark.com/. Access at: 23/01/2024.
Yang, L.-J.; Tao, Y.; Jiang, X.; Wang, Y.; Li, Y.-H.; Zhou, L.; Wang, P.-Z.; Li, Y.-Y.; Zhao, X.; Wang, H. -J.; Jeppesen, E.; Xie, P. 2023. Interactive effects of nutrients and salinity on zooplankton in subtropical plateau lakes with contrasting water depth. Frontiers in Environmental Sciences, 11, 1110746. https://doi.org/10.3389/fenvs.2023.1110746
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Natalia Ferreira dos Santos, Mauro de Melo Júnior
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Material protegido por direitos autorais e plágio. No caso de material com direitos autorais ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não do JEAP ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar. Se existir alguma suspeita sobre a originalidade do material, a Comissão Editorial pode verificar o manuscrito por plágio. Nos casos em que trechos já publicados em outro documento for confirmado, o manuscrito será devolvido sem revisão adicional e sem a possibilidade de nova submissão. Autoplágio (ou seja, o uso de frases idênticas de documentos publicados anteriormente pelo mesmo autor) também não é aceitável.
Direitos autorais: Autor
Material protected by copyright and plagiarism rights. In the case of copyrighted material being reproduced in a manuscript, full attribution should be informed in the text; an authorization document is proving to be sent to the Editorial Board as a supplementary document. It is the responsibility of the authors, not JEAP or editors or reviewers, to inform, in the article, the authors of texts, data, graphics, images and maps previously published elsewhere. If there is any suspicion about the originality of the material, the Editorial Board can check the manuscript for plagiarism. Where plagiarism is confirmed, the document will be returned without further review and the possibility of a new submission. Self-plagiarism (i.e., the use of the same phrases previously published documents by any of the authors) is not acceptable.
Copyright: Author