Cultivo de microalgas para tratamento de águas residuais: revisão de literatura

Autores

  • Aline Antonia Castro Universidade do Vale do Taquari
  • Odorico Konrad Universidade do Vale do Taquari
  • Munique Marder Universidade do Vale do Taquari
  • Marildo Guerini Filho Universidade do Vale do Taquari

Palavras-chave:

Waste water, Microalgae, Treatment

Resumo

O cultivo de microalgas em efluentes residuais é considerado uma ferramenta eficaz no sentido de biorremediação natural e de baixo custo para assimilação de nutrientes e outros compostos contaminantes do meio, podendo ser utilizado para o tratamento terciário em estações de tratamento. O objetivo do presente estudo foi realizar uma revisão de literatura sobre o atual campo de pesquisa relacionado à biotecnologia de microalgas cultivadas em águas residuárias, de modo a apresentar sua relevância enquanto alternativa de biorremediação e apontar os principais resultados de pesquisas empíricas, os desafios e lacunas de conhecimento existentes. Uma revisão abrangente da literatura foi realizada por meio de busca eletrônica de artigos científicos, utilizando-se a base de dados ScienceDirect. Os resultados mostram que as culturas de microalgas em efluentes mostraram-se eficientes na remoção ou diminuição de nutrientes, como o nitrogênio e o fósforo, na redução da DBO, na inibição de coliformes fecais e na remoção de metais pesados. Porém, ainda existem aspectos técnicos que precisam ser desenvolvidos, necessitando de mais pesquisas na área para aprimorar as técnicas de colheita e secagem das microalgas para aproveitamento da biomassa de forma eficiente e rentável.

Downloads

Não há dados estatísticos.

Biografia do Autor

Aline Antonia Castro, Universidade do Vale do Taquari

Engenharia CivilCiências Ambientais

Referências

ABDEL-RAOUF, N.; AL-HOMAIDAN, A.A.; IBRAHEEM, I.BM. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, v. 19, n. 3, p. 257-275, 2012.

ANSARI, Ahmad; RAVINDRAN, Balasubramani; GUPTA, Sanjay Kumar; NARS, Mahmoud; RAWAT, Ismail; BUX, Faizal. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management, v. 240, p. 293-302, 2019. https://doi.org/10.1016/j.jenvman.2019.03.123

ANSARI, Ahmad; RAVINDRAN, Balasubramani; GUPTA, Sanjay Kumar; NARS, Mahmoud; RAWAT, Ismail; BUX, Faizal. Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, v. 182, n. 1, p. 634-643, 2018. https://doi.org/10.1016/j.jclepro.2018.02.098

ASHOK, Vaishali; SHRIWASTAV, Amritanshu; BOSE, Purnendu; GUPTA, Sanjay Kumar. Phycoremediation of wastewater using algal-bacterial photobioreactor: Effect of nutrient load and light intensity. Bioresource Technology Reports, v. 7, p. 100-205, 2019. https://doi.org/10.1016/j.biteb.2019.100205

BALDEV, E.; MUBARAKALI, D.; KUMAR, K. S.; ARUTSELVAN, C.; ALHARBI, N. S.; ALHARBI, S. A. Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew Energy, v.123, p. 486-498, 2018.

https://doi.org/10.1016/j.renene.2018.02.032

BARROS, Ana I,; GONÇALVES, Ana L.; SIMÔES, Manuel; PIRES, José C.M. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, v. 41, p. 1489-1500, 2015.

http://dx.doi.org/10.1016/j.rser.2014.09.037 1364-0321

BASHAN, Luiz E.; BASHAN, Yoav. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, v. 101, n. 6, p. 1611-1627, 2010. https://doi.org/10.1016/j.biortech.2009.09.043

CAI, Ting; PARK, Stephen Y.; LI, Yebo. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, v. 19, p. 360-369, 2013. https://doi.org/10.1016/j.rser.2012.11.030

CESÁRIO, MT; FONSECA, M. M. R. da, MARQUES, M. M.; ALMEIDA, M. C. M. D. de. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol. Adv., v. 36, n.3, p. 798-817, 2018.

https://doi.org/10.1016/j.biotechadv.2018.02.006

CHEAH, Wai Yan; SHOW, Pau Loke; JUAN, Joon Ching; CHANG, Jo-Shu; LING, Tau Chuan. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conversion and Management, v. 174, n. 15, p. 430-438, 2018. https://doi.org/10.1016/j.enconman.2018.08.057

CHEN, Guanyi; ZHAO, Liu; QI, Yun. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy, v. 137, p. 282-291, 2015. https://doi.org/10.1016/j.apenergy.2014.10.032

CHEN, Chun-Yen; YEH, Kuei-Ling; AISYAH, Rifka; LEE, Duu-Jong; CHANG, Jo-Shu. , photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, v. 102, n. 1, p. 71-81, 2011.

https://doi.org/10.1016/j.biortech.2010.06.159

CHENG, Pengfei; JI, Bei GAO, Lili; ZHANG, Wei; WANG, Junfeng; LIU, Tianzhong. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol., v.138, p. 95-100, 2013. https://doi.org/10.1016/j.biortech.2013.03.150

CHRISTENSON, Logan; SIMS, Ronald. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, v. 26, n. 6, p. 686-702, 2011. https://doi.org/10.1016/j.biotechadv.2011.05.015

DECONINCK, Nico ; MUYLAERT, Koenraad ; IVENS, Wilfried ; VANDAMME, Dries. Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, v. 31, p. 469-477, 2018.

https://doi.org/10.1016/j.algal.2018.01.016

DELANKA-PEDIGE, Himali MK; MUNASINGHE-ARACHCHIGE, Srimali P.; CORNELIUS, Jackson; HENKANATTE-GEDERA, Shanka M.; TCHINDA, Duplex ; ZHANG, Yanyan ; NIRMALAKHANDAN, Nagamany . Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulfuraria. Algal Reserach, v. 39, p. 1201453, 2019.

DELGADILLO-MIRQUEZ, Liliana; LOPES, Filpa; TAIDI, Behbnam; PAREAU, Dominique. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, v. 11, p. 18-26, 2016. https://doi.org/10.1016/j.btre.2016.04.003

ESCAPA, C.; COIMBRA, R.N.; PANIAGUA, S.; GARCÍA, A.I.; OTERO, M. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Research, v. 18, p. 127-134, 2016. https://doi.org/10.1016/j.algal.2016.06.008

ESCAPA, C.; COIMBRA, R.N.; PANIAGUA, S.; GARCÍA, A.I.; OTERO, M. Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technolology, v. 185, p. 276-284, 2015. https://doi.org/10.1016/j.biortech.2015.03.004

FARIED, M.; SAMER, M.; ABDELSALAM, E.; YOUSEF, R. S.; ATTIA, Y. A.; ALI, A. S. Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, v 79, p. 893-913, 2017.

https://doi.org/10.1016/j.rser.2017.05.199

FULBRIGHT, S.P.; ROBBINS-PIANKA, A.; Berg-Lyons, D.; KNIGHT, R.; REARDON, K.F.; CHISHOLM, S.Y.. Bacterial community changes in an industrial algae production system. Algal Res, v. 31, p. 147-156, 2018.

https://doi.org/10.1016/j.algal.2017.09.010

GALÈS, Amandini; BONNAFOUS, Anaïs; CARRÉ Claire; JAUZEIN, Vincent; LA NOUGUÈRE; Elodie; Le Floc'h, Emilie; PINOIT, Clothilde; ROQUES, Cécile; SIALVE, Bruno; SIMIER, Monique; STEYER, Jean-Philippe; FOUILLAND, Eric. Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, v. 40, p. 101-508, 2019. https://doi.org/10.1016/j.algal.2019.101508

GEADA, P.; VASCONCELOS, V.; VICENTE, A.; FERNANDES, B. Chapter 13 - Microalgal biomass cultivation. Algal Green Chemistry, p. 257-284, 2017. https://doi.org/10.1016/B978-0-444-63784-0.00013-8

GEBREMEDHIN, Gebremedhin; MISHRA, Sanjeev; MOHANTY, Kaustubha. Augmentation of native microalgae based biofuel production through statistical optimization of campus sewage wastewater as low-cost growth media. Journal Environmental Chemical Engineering, v. 6, n. 5, p. 6623-6632, 2018. https://doi.org/10.1016/j.jece.2018.08.061

GERARDO, M. L.; VAN DEN HENDE, S.; VERVAEREN , H.; COWAD, T, S.C.. Habilidade decolheita de microalgas em uma abordagem de biorrefinaria: uma revisão dos desenvolvimentos e estudos de caso de plantas-piloto. Algal Res., v. 11, p. 248-262, 2015

https://doi.org/10.1016/j.algal.2015.06.019

GONÇALVES, Ana L.; PIRES, José C. M.; SIMÕES, Manuel. A review on the use of microalgal consortia for wastewater treatment. Algal Research, v. 24, p. 403-415, 2017. https://doi.org/10.1016/j.algal.2016.11.008

GUPTA, Sanjay Kumar; ANSARI, Faiz Ahmad; Shriwastav, Amritanshu; SAHOO, Narendra Kumar; RAWAT, Ismail; BUX, Faizal. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, v. 115, p. 255-264, 2016. https://doi.org/10.1016/j.jclepro.2015.12.040

HAN, B.; GOH, H.; CHYUAN, H.; YEE, M.; CHEN, W.; LING, K. Sustainability of direct biodiesel synthesis from microalgae biomass : a critical review. Renew Sustain Energy Rev, v.107, p. 59-74, 2019.

https://doi.org/10.5771/9783828870673-59

HAN, Lin; PEI, Haiyan; HU, Wenrong; JIANG, Liqun, HAN, Fei. Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresourse Technology, v. 175, p. 262-268, 2015. https://doi.org/10.1016/j.biortech.2014.10.100

HAN, Lin; PEI, Haiyan; HU, Wenrong; HAN, Fei; SONG, Mingming; ZHANG, Shuo. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresourse Technology, v. 165, p. 38-41, 2014. https://doi.org/10.1016/j.biortech.2014.03.131

HENKANATTE-GEDERA, S.M; SELAVARATNAM, T.; CASKAN, N.; NIRMALAKHANDAN, N.; VAN VOORHIES, W.; LAMMERS, Peter J. Algal-based, single-step treatment of urban wastewaters. Bioresource Technology, v. 189, p. 273-278, 2015. https://doi.org/10.1016/j.biortech.2015.03.120

HENKANATTE-GEDERA, S.M; SELAVARATNAM, T.; KARBAKHSHRAVARI, M.; MYINT, M.; NIRMALAKHANDAN, N.; VAN VOORHIES, W.; LAMMERS, Peter J. Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration. Algal Research, v. 24, p. 450-456, 2017. https://doi.org/10.1016/j.algal.2016.08.001

HUANG, C.C.; HUNG, J.J.; PENG, S.H.; CHEN, C.N.N. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth. Bioresour Technol, v. 112, p. 228-238, 2012. https://doi.org/10.1016/j.biortech.2012.02.078

KARAGOZ, Pinar; BILL, Roslun M.; OZKAN, Melek. Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renewable Energy, v.143, p. 741-752, 2019.

https://doi.org/10.1016/j.renene.2019.05.045

KUMAR, Panga Kiran; KRISHNA, S. Vijaya; VERMA, Kavita; POOJA, K.; HIMABINDU, V. Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, v. 25, p. 133-146, 2018. https://doi.org/10.1016/j.sajce.2018.04.006

KUMAR, Kanhaiya; MISHRA, Sanjiv K.; SHRIVASTAV, Anupama; PARK, Min S.; YANG, Ji-Won. Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, v. 51, p. 875-885, 2015. https://doi.org/10.1016/j.rser.2015.06.033

KURNIAWATI, HÁ; ISMADJI, S.; LIU, JC. Microalgas colheita por flotação usando saponina natural e quitosana. Bioresource Technolology, v. 166, p. 429-434, 2014.

http://dx.doi.org/10.1016/j.biortech.2014.05.079

LAM, Tan Phat; LEE, Tse-Mim; CHEN, Chun-Yen; CHENGS, Jo-Shu. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresource Technology, v. 252, p. 180-187, 2018. https://doi.org/10.1016/j.biortech.2017.12.088

LAM, M.K.; LEE, K.T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Apple Energy, v. 94, p. 303-308, 2012. https://doi.org/10.1016/j.apenergy.2012.01.075

LAM, Man Kee; LEE, Keat Teong. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnology Advances, v. 29, n. 1, p. 124-141, 2011. https://doi.org/10.1016/j.biotechadv.2010.10.001

LAM; LEE, TM; CHEN, CY; CHANG, JS. Estratégias para controlar contaminantes biológicos durante o cultivo de microalgas em lagoas abertas. Bioresource Technology, v. 252, p. 180-187, 2018.

https://doi.org/10.1016/j.biortech.2017.12.088

LEE, Chang Soo; Lee, Sang-Ah; KO, So-Ra; OH, Hee-Mock; AHN, Chi-Yong. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Research, v. 68, n. 1, p. 680-691, 2015. https://doi.org/10.1016/j.watres.2014.10.029

LEITE, Gustavo B.; ABDELAZIZ, Ahmed E. M.; HALLENBECK, Patrik C. Algal biofuels: challenges and opportunities. Bioresource Technology, v. 145, p. 134-141, 2013. https://doi.org/10.1016/j.biortech.2013.02.007

LI, Yecong; CHEN, Ui-Feng; CHEN, Paul; MIM, Mim; ZHOU, Wenguang G.; MARTINEZ, Blanca; ZHU, Jun; RUAN, Roger. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, v. 102, p. 5138-5144, 2011. https://doi.org/10.1016/j.biortech.2011.01.091

LING, Yun; SUN, Li-ping; WANG, Shi-ying; LIN, Carol Sze Ki; ZHOU, Zhi-gang. Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, v. 148, p. 162-169, 2019. https://doi.org/10.1016/j.bej.2019.05.012

LIU, Tianzhong; WANG, Junfeng; HU, Qiang; CHENG, Pengfei; JI, Bei; LIU, Jinli; CHEN, Yu; ZHANG, Wei; CHEN, Xiaoling; CHEN, Lin; GAO, Lili; JI, Chunli; Wang, Hui. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresource Technology, v. 127, p. 2016-222, 2013. https://doi.org/10.1016/j.biortech.2012.09.100

MANTZOROU, Antonia; VERVERIDIS, Folippos. Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, v. 651, p. 3187-3201, 2019. https://doi.org/10.1016/j.scitotenv.2018.09.355

MATA, Teresa M.; MARTINS, Antònio A.; CAETANO, Nidia S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, v. 14, p. 217-232, 2010. https://doi.org/10.1016/j.rser.2009.07.020

MATAMOROS, Victor; GUTIÉRREZ, Raquel; FERRER, Ivet; GARCÍA, Joan; BAYONA, Josep M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J. Hazard. Mater., V. 288, p. 34-42, 2015. https://doi.org/10.1016/j.jhazmat.2015.02.002

MORENO OSORIO, J.H.; PINTO, G.; A. POLLIO; FRUNZO, L.; LENS, P.N.L.; ESPOSITO, G.. Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresour Bioprocess, v. 6, p. 27, 2019.

MUBARAK, M.; SHAIJA, A.; SUCHITHRA, TV. Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering, v.7, n. 4, p. 103221, 2019.

https://doi.org/10.1016/j.jece.2019.103221

NIE, Changliang; PEI, Haiyan; JIANG, Liqun; CHENG, Juan; HAN, fei. Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment. Renewable Energy, v. 122, p. 517-525, 2018. https://doi.org/10.1016/j.renene.2018.02.005

NOVOVESKÁ, Lucie; ZAPATA, Anastasia K.M.; Zabolotney, Jeffrey B.; ATWOOD, Matthew C.; SUNDSTROM, Eric R. Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, v. 18, p. 86-94, 2016. https://doi.org/10.1016/j.algal.2016.05.033

OZKAN, Altan; KINNEY, Kerry; KATZ, Lynn; BERBEROGLU, Halil. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technology, v. 114, p. 542-548, 2012. https://doi.org/10.1016/j.biortech.2012.03.055

PETER J.; SCHNURR D.; GRANT, Allen. Factors affecting algae biofilm growth and lipid production: A review. Renewable and Sustainable Energy Reviews, V. 52, P. 418-429, 2015.

https://doi.org/10.1016/j.rser.2015.07.090

PITTMAN, Jon K.; DEAN, Andew P.; OSUNDEKO, Olumayowa. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, v. 102, n. 1, p. 17-25, 2011. https://doi.org/10.1016/j.biortech.2010.06.035

POURKARIMI, Sara; HALLAJISANI, Ahmad; ALIZADEHDAKHEL, Asghar; NOURALISHAHI, Amideddin. Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis, v. 142, p. 104599, 2019.

https://doi.org/10.1016/j.jaap.2019.04.015

RAJASULOCHANA, P.; PREETHY, V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, v. 2, n. 4, p. 175-184, 2016. https://doi.org/10.1016/j.reffit.2016.09.004

RIGOBELLO, Eliane Sloboda; DANTAS, Angela Di Bernardo; DI BERNARDO, Luiz; VIEIRA. Eny Maria. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere, v. 92, p. 184-191, 2013. https://doi.org/10.1016/j.chemosphere.2013.03.010

ROGERS, JonathanN.; ROSENBERG, Julian N.; GUZMAN, Bernardo J.; OH, Victor H.; MIMBELA, Luz Elena; GHASSEMI, Abbas; BETENBAUGH, Michael J.; OYLER, George A.; DONOHUE, Marc D. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research, v. 4, p. 76-88, 2014. https://doi.org/10.1016/j.algal.2013.11.007

ROOSTAEI, Javad; ZHANG, Yongli. Spatially Explicit Life Cycle Assessment: Opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Reserch, v. 24, p. 395-402, 2017. https://doi.org/10.1016/j.algal.2016.08.008

RUAN, Yuefei; WU, Rongben; LAM, James CW; ZHANG, Kai, LAM, Paul KS. Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment. Water Research, v. 149, p.607-616, 2019. https://doi.org/10.1016/j.watres.2018.11.010

RUIZ-MARIN, Alejandro; MENDOZA-ESPINOSA, Leopoldo G.; STEPHENSON, Tom. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, v. 101, n. 1, p. 58-64, 2010. https://doi.org/10.1016/j.biortech.2009.02.076

SALAMA, E.S.; JEON, B.H.; KURADE, M.B.; ABOU-SHANAB, R.A.I.; GOVINDWAR, S.P.; LEE, S.H. Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production. Energy Convers Manag,v. 121, p. 105-112, 2016.

https://doi.org/10.1016/j.enconman.2016.05.020

SHUBA, E.S.; KIFLE, D. Microaglae to biofuels: “Promising” alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, v. 81, n. 1, p. 743-755, 2018.

https://doi.org/10.1016/j.rser.2017.08.042

SINGH, Lakhvinder; PAVANKUMAR, Asalapuram Ramachandran; LAKSHMANAN, Ramnath; RAJARAO, Gunaratna Kuttuva. Effective removal of Cu 2+ ions from aqueous medium using alginate as biosorbent. Ecol. Eng., v. 38, p. 119-124, 2012. https://doi.org/10.1016/j.ecoleng.2011.10.007

SUKACOVÁ, Kateřina; TRTÍLEK, Martin; RATAJ, Tomáš. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, v. 71, p. 55-63, 2015. https://doi.org/10.1016/j.watres.2014.12.049

SUPARMANIAM, Uganeeswary ; LAM, Man Kee ; UEMUR, Yoshimitsu; LIM, Jun Wei ; LEE, Keat Teong; SHUIT, Siew Hoong. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, v 115, p. 109361, 2019. https://doi.org/10.1016/j.rser.2019.109361

TANG, Cong-Cong; TIAN, Yu; LIANG, Heng; ZUO, Wei; WANG, Zhang-Wei; ZHANG Jun; HE, Zhang-We. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresource Technology, v. 250, p. 185-190, 2018. https://doi.org/10.1016/j.biortech.2017.11.028

TANG, Cong-Cong; TIAN, Yu; HE, Zhang-We; ZUO, Wei; ZHANG Jun. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater. Bioresource Technology, v. 265, p. 422-431, 2018. https://doi.org/10.1016/j.biortech.2018.06.033

TAN, X.B., LAM, M.K.; UEMURA, Y.; LIM, J.W.; WONG, C.Y.; LEE, K.T. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng, v. 26, p. 17-30, 2018.

https://doi.org/10.1016/j.cjche.2017.08.010

TING, H.; HAIFENG, L.; SHANSHAN, M.; ZHANG, Y.; ZHIDAN, L.; NA,D. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. International Journal Agric Biology Engergy, v. 10, p. 1-29, 2017.

https://doi.org/10.3965/j.ijabe.20171001.2705

TIWARI, Bhagyashree; SELLAMUTHU, Balasubramanian.; OUARDA, Yassini; DROGUI, Patrik; TYAGI, Rajeshwar D.; BUELNA, Gerardo. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technolology, v. 224, p. 1-12, 2017. https://doi.org/10.1016/j.biortech.2016.11.042

TRAN, C.; NOSWORTHY, N.; BILEK, M.; MCKENZIE, D. Covalent immobilization of enzymes and yeast: towards a continuous simultaneous saccharification and fermentation process for cellulosic etanol. Biomass Bioenergy, v. 81, p. 234-241, 2015.

TUZEN, M.; SARI, A. Selenium biosorption from aqueous solution by green algae biomass (Cladophora hutchinsiae): equilibrium, thermodynamic and kinetic studies.Chem. Eng. J., v. 158, p. 200-206, 2010. https://doi.org/10.1016/j.cej.2009.12.041

VAN DEN HENDE, Sofie; VERVAEREN, Han; DESMET, Sem; BOON, Nico. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnology, v. 29, n. 1, p. 23-31, 2011. https://doi.org/10.1016/j.nbt.2011.04.009

WALLS, Laura E.; VELASQUEZ-ORTA, Sharon B.; ROMERO-FRASCA, Enrique; LEARY, Peter; NOGUEZ, Isaura Yánez; LEDESMA, Maria Teresa Orta. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochemical Engineering Journal, v. 151, n. 15, p. 107319, 2019. https://doi.org/10.1016/j.bej.2019.107319

WAYNE, Chew Kit; REEN, Chia Shir; SHOW, Pau Loke; JIUN, Yap Yee; CHUAN, Ling Tau; CHANG, Lo-Shu. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Tiwan Institute of Chemical Engineers, v. 91, p. 332-344, 2018. https://doi.org/10.1016/j.jtice.2018.05.039

YUCE, Meral; NAZIR, Hasan; DONMEZ, Gönül. Advanced research on a new algae sensor determining aqueous media Pb (II) ions. Biosens Bioelectron., v. 26, p. 321-326, 2010. https://doi.org/10.1016/j.bios.2010.08.022

ZHAN; RONG, J.; WANG, Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal Hydrogen Energy, v. 42, p. 8505-8517, 2017.

https://doi.org/10.1016/j.ijhydene.2016.12.021

ZHOU, Xu; JIN, Wenbiao; TU, Renjie; GUO, Qiongjie; HAN, Song-fang; CHEN, Chuan; WANG, Qing; LIU, Wentao; JENSEN, Paul D.;WANG, Qilin. Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, v. 221, p. 502-508, 2019. https://doi.org/10.1016/j.jclepro.2019.02.260

ZHOU, Wenguang; LI, Yecong; MIN, Mim; HU, Bing; ZHANG, Hong; MA, Xiaochen; LI, Liang; CHENG, Yanling; CHEN, Paul; RUAN, Roger. Ruan. Growing wastewater-born microalga auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy, v. 98, p. 433-440, 2012. https://doi.org/10.1016/j.apenergy.2012.04.005

ZHUANG, Lin-Lan; YU, Dawei; ZHANG, Jian; LIU, Fei-fei; WU, Yin-Hu; ZHANG, Tian-Yuan; DAO, Guo-Hua; HU, Hong-Ying. The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable and Sustainable Energy Reviews, v. 94, p. 1110-1119, 2018. https://doi.org/10.1016/j.rser.2018.06.006

ZHUANG, Lin-Lan; AZIMI, Yaldah; YU, Dawei; WANG, Wen-Long; WU, Yin-Hu; DAO, Guo-Hua; HU, Hong-Ying. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers. Bioresource Technolology, v. 218, p. 643-649, 2016. https://doi.org/10.1016/j.biortech.2016.07.013

Downloads

Publicado

2020-08-29

Como Citar

Castro, A. A., Konrad, O., Marder, M., & Filho, M. G. (2020). Cultivo de microalgas para tratamento de águas residuais: revisão de literatura. Revista Geama, 6(2), 60–71. Recuperado de https://journals.ufrpe.br/index.php/geama/article/view/3346

Edição

Seção

REVISÃO DE LITERATURA