Cultivo de microalgas para tratamento de águas residuais: revisão de literatura
Palavras-chave:
Waste water, Microalgae, TreatmentResumo
O cultivo de microalgas em efluentes residuais é considerado uma ferramenta eficaz no sentido de biorremediação natural e de baixo custo para assimilação de nutrientes e outros compostos contaminantes do meio, podendo ser utilizado para o tratamento terciário em estações de tratamento. O objetivo do presente estudo foi realizar uma revisão de literatura sobre o atual campo de pesquisa relacionado à biotecnologia de microalgas cultivadas em águas residuárias, de modo a apresentar sua relevância enquanto alternativa de biorremediação e apontar os principais resultados de pesquisas empíricas, os desafios e lacunas de conhecimento existentes. Uma revisão abrangente da literatura foi realizada por meio de busca eletrônica de artigos científicos, utilizando-se a base de dados ScienceDirect. Os resultados mostram que as culturas de microalgas em efluentes mostraram-se eficientes na remoção ou diminuição de nutrientes, como o nitrogênio e o fósforo, na redução da DBO, na inibição de coliformes fecais e na remoção de metais pesados. Porém, ainda existem aspectos técnicos que precisam ser desenvolvidos, necessitando de mais pesquisas na área para aprimorar as técnicas de colheita e secagem das microalgas para aproveitamento da biomassa de forma eficiente e rentável.Downloads
Referências
ABDEL-RAOUF, N.; AL-HOMAIDAN, A.A.; IBRAHEEM, I.BM. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, v. 19, n. 3, p. 257-275, 2012.
ANSARI, Ahmad; RAVINDRAN, Balasubramani; GUPTA, Sanjay Kumar; NARS, Mahmoud; RAWAT, Ismail; BUX, Faizal. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of Environmental Management, v. 240, p. 293-302, 2019. https://doi.org/10.1016/j.jenvman.2019.03.123
ANSARI, Ahmad; RAVINDRAN, Balasubramani; GUPTA, Sanjay Kumar; NARS, Mahmoud; RAWAT, Ismail; BUX, Faizal. Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: A multivariate approach. Journal of Cleaner Production, v. 182, n. 1, p. 634-643, 2018. https://doi.org/10.1016/j.jclepro.2018.02.098
ASHOK, Vaishali; SHRIWASTAV, Amritanshu; BOSE, Purnendu; GUPTA, Sanjay Kumar. Phycoremediation of wastewater using algal-bacterial photobioreactor: Effect of nutrient load and light intensity. Bioresource Technology Reports, v. 7, p. 100-205, 2019. https://doi.org/10.1016/j.biteb.2019.100205
BALDEV, E.; MUBARAKALI, D.; KUMAR, K. S.; ARUTSELVAN, C.; ALHARBI, N. S.; ALHARBI, S. A. Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew Energy, v.123, p. 486-498, 2018.
https://doi.org/10.1016/j.renene.2018.02.032
BARROS, Ana I,; GONÇALVES, Ana L.; SIMÔES, Manuel; PIRES, José C.M. Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, v. 41, p. 1489-1500, 2015.
http://dx.doi.org/10.1016/j.rser.2014.09.037 1364-0321
BASHAN, Luiz E.; BASHAN, Yoav. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, v. 101, n. 6, p. 1611-1627, 2010. https://doi.org/10.1016/j.biortech.2009.09.043
CAI, Ting; PARK, Stephen Y.; LI, Yebo. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, v. 19, p. 360-369, 2013. https://doi.org/10.1016/j.rser.2012.11.030
CESÁRIO, MT; FONSECA, M. M. R. da, MARQUES, M. M.; ALMEIDA, M. C. M. D. de. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol. Adv., v. 36, n.3, p. 798-817, 2018.
https://doi.org/10.1016/j.biotechadv.2018.02.006
CHEAH, Wai Yan; SHOW, Pau Loke; JUAN, Joon Ching; CHANG, Jo-Shu; LING, Tau Chuan. Microalgae cultivation in palm oil mill effluent (POME) for lipid production and pollutants removal. Energy Conversion and Management, v. 174, n. 15, p. 430-438, 2018. https://doi.org/10.1016/j.enconman.2018.08.057
CHEN, Guanyi; ZHAO, Liu; QI, Yun. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy, v. 137, p. 282-291, 2015. https://doi.org/10.1016/j.apenergy.2014.10.032
CHEN, Chun-Yen; YEH, Kuei-Ling; AISYAH, Rifka; LEE, Duu-Jong; CHANG, Jo-Shu. , photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, v. 102, n. 1, p. 71-81, 2011.
https://doi.org/10.1016/j.biortech.2010.06.159
CHENG, Pengfei; JI, Bei GAO, Lili; ZHANG, Wei; WANG, Junfeng; LIU, Tianzhong. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol., v.138, p. 95-100, 2013. https://doi.org/10.1016/j.biortech.2013.03.150
CHRISTENSON, Logan; SIMS, Ronald. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, v. 26, n. 6, p. 686-702, 2011. https://doi.org/10.1016/j.biotechadv.2011.05.015
DECONINCK, Nico ; MUYLAERT, Koenraad ; IVENS, Wilfried ; VANDAMME, Dries. Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, v. 31, p. 469-477, 2018.
https://doi.org/10.1016/j.algal.2018.01.016
DELANKA-PEDIGE, Himali MK; MUNASINGHE-ARACHCHIGE, Srimali P.; CORNELIUS, Jackson; HENKANATTE-GEDERA, Shanka M.; TCHINDA, Duplex ; ZHANG, Yanyan ; NIRMALAKHANDAN, Nagamany . Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulfuraria. Algal Reserach, v. 39, p. 1201453, 2019.
DELGADILLO-MIRQUEZ, Liliana; LOPES, Filpa; TAIDI, Behbnam; PAREAU, Dominique. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, v. 11, p. 18-26, 2016. https://doi.org/10.1016/j.btre.2016.04.003
ESCAPA, C.; COIMBRA, R.N.; PANIAGUA, S.; GARCÍA, A.I.; OTERO, M. Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Research, v. 18, p. 127-134, 2016. https://doi.org/10.1016/j.algal.2016.06.008
ESCAPA, C.; COIMBRA, R.N.; PANIAGUA, S.; GARCÍA, A.I.; OTERO, M. Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technolology, v. 185, p. 276-284, 2015. https://doi.org/10.1016/j.biortech.2015.03.004
FARIED, M.; SAMER, M.; ABDELSALAM, E.; YOUSEF, R. S.; ATTIA, Y. A.; ALI, A. S. Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, v 79, p. 893-913, 2017.
https://doi.org/10.1016/j.rser.2017.05.199
FULBRIGHT, S.P.; ROBBINS-PIANKA, A.; Berg-Lyons, D.; KNIGHT, R.; REARDON, K.F.; CHISHOLM, S.Y.. Bacterial community changes in an industrial algae production system. Algal Res, v. 31, p. 147-156, 2018.
https://doi.org/10.1016/j.algal.2017.09.010
GALÈS, Amandini; BONNAFOUS, Anaïs; CARRÉ Claire; JAUZEIN, Vincent; LA NOUGUÈRE; Elodie; Le Floc'h, Emilie; PINOIT, Clothilde; ROQUES, Cécile; SIALVE, Bruno; SIMIER, Monique; STEYER, Jean-Philippe; FOUILLAND, Eric. Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, v. 40, p. 101-508, 2019. https://doi.org/10.1016/j.algal.2019.101508
GEADA, P.; VASCONCELOS, V.; VICENTE, A.; FERNANDES, B. Chapter 13 - Microalgal biomass cultivation. Algal Green Chemistry, p. 257-284, 2017. https://doi.org/10.1016/B978-0-444-63784-0.00013-8
GEBREMEDHIN, Gebremedhin; MISHRA, Sanjeev; MOHANTY, Kaustubha. Augmentation of native microalgae based biofuel production through statistical optimization of campus sewage wastewater as low-cost growth media. Journal Environmental Chemical Engineering, v. 6, n. 5, p. 6623-6632, 2018. https://doi.org/10.1016/j.jece.2018.08.061
GERARDO, M. L.; VAN DEN HENDE, S.; VERVAEREN , H.; COWAD, T, S.C.. Habilidade decolheita de microalgas em uma abordagem de biorrefinaria: uma revisão dos desenvolvimentos e estudos de caso de plantas-piloto. Algal Res., v. 11, p. 248-262, 2015
https://doi.org/10.1016/j.algal.2015.06.019
GONÇALVES, Ana L.; PIRES, José C. M.; SIMÕES, Manuel. A review on the use of microalgal consortia for wastewater treatment. Algal Research, v. 24, p. 403-415, 2017. https://doi.org/10.1016/j.algal.2016.11.008
GUPTA, Sanjay Kumar; ANSARI, Faiz Ahmad; Shriwastav, Amritanshu; SAHOO, Narendra Kumar; RAWAT, Ismail; BUX, Faizal. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production, v. 115, p. 255-264, 2016. https://doi.org/10.1016/j.jclepro.2015.12.040
HAN, B.; GOH, H.; CHYUAN, H.; YEE, M.; CHEN, W.; LING, K. Sustainability of direct biodiesel synthesis from microalgae biomass : a critical review. Renew Sustain Energy Rev, v.107, p. 59-74, 2019.
https://doi.org/10.5771/9783828870673-59
HAN, Lin; PEI, Haiyan; HU, Wenrong; JIANG, Liqun, HAN, Fei. Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresourse Technology, v. 175, p. 262-268, 2015. https://doi.org/10.1016/j.biortech.2014.10.100
HAN, Lin; PEI, Haiyan; HU, Wenrong; HAN, Fei; SONG, Mingming; ZHANG, Shuo. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresourse Technology, v. 165, p. 38-41, 2014. https://doi.org/10.1016/j.biortech.2014.03.131
HENKANATTE-GEDERA, S.M; SELAVARATNAM, T.; CASKAN, N.; NIRMALAKHANDAN, N.; VAN VOORHIES, W.; LAMMERS, Peter J. Algal-based, single-step treatment of urban wastewaters. Bioresource Technology, v. 189, p. 273-278, 2015. https://doi.org/10.1016/j.biortech.2015.03.120
HENKANATTE-GEDERA, S.M; SELAVARATNAM, T.; KARBAKHSHRAVARI, M.; MYINT, M.; NIRMALAKHANDAN, N.; VAN VOORHIES, W.; LAMMERS, Peter J. Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration. Algal Research, v. 24, p. 450-456, 2017. https://doi.org/10.1016/j.algal.2016.08.001
HUANG, C.C.; HUNG, J.J.; PENG, S.H.; CHEN, C.N.N. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth. Bioresour Technol, v. 112, p. 228-238, 2012. https://doi.org/10.1016/j.biortech.2012.02.078
KARAGOZ, Pinar; BILL, Roslun M.; OZKAN, Melek. Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renewable Energy, v.143, p. 741-752, 2019.
https://doi.org/10.1016/j.renene.2019.05.045
KUMAR, Panga Kiran; KRISHNA, S. Vijaya; VERMA, Kavita; POOJA, K.; HIMABINDU, V. Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, v. 25, p. 133-146, 2018. https://doi.org/10.1016/j.sajce.2018.04.006
KUMAR, Kanhaiya; MISHRA, Sanjiv K.; SHRIVASTAV, Anupama; PARK, Min S.; YANG, Ji-Won. Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, v. 51, p. 875-885, 2015. https://doi.org/10.1016/j.rser.2015.06.033
KURNIAWATI, HÁ; ISMADJI, S.; LIU, JC. Microalgas colheita por flotação usando saponina natural e quitosana. Bioresource Technolology, v. 166, p. 429-434, 2014.
http://dx.doi.org/10.1016/j.biortech.2014.05.079
LAM, Tan Phat; LEE, Tse-Mim; CHEN, Chun-Yen; CHENGS, Jo-Shu. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresource Technology, v. 252, p. 180-187, 2018. https://doi.org/10.1016/j.biortech.2017.12.088
LAM, M.K.; LEE, K.T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Apple Energy, v. 94, p. 303-308, 2012. https://doi.org/10.1016/j.apenergy.2012.01.075
LAM, Man Kee; LEE, Keat Teong. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnology Advances, v. 29, n. 1, p. 124-141, 2011. https://doi.org/10.1016/j.biotechadv.2010.10.001
LAM; LEE, TM; CHEN, CY; CHANG, JS. Estratégias para controlar contaminantes biológicos durante o cultivo de microalgas em lagoas abertas. Bioresource Technology, v. 252, p. 180-187, 2018.
https://doi.org/10.1016/j.biortech.2017.12.088
LEE, Chang Soo; Lee, Sang-Ah; KO, So-Ra; OH, Hee-Mock; AHN, Chi-Yong. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Research, v. 68, n. 1, p. 680-691, 2015. https://doi.org/10.1016/j.watres.2014.10.029
LEITE, Gustavo B.; ABDELAZIZ, Ahmed E. M.; HALLENBECK, Patrik C. Algal biofuels: challenges and opportunities. Bioresource Technology, v. 145, p. 134-141, 2013. https://doi.org/10.1016/j.biortech.2013.02.007
LI, Yecong; CHEN, Ui-Feng; CHEN, Paul; MIM, Mim; ZHOU, Wenguang G.; MARTINEZ, Blanca; ZHU, Jun; RUAN, Roger. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, v. 102, p. 5138-5144, 2011. https://doi.org/10.1016/j.biortech.2011.01.091
LING, Yun; SUN, Li-ping; WANG, Shi-ying; LIN, Carol Sze Ki; ZHOU, Zhi-gang. Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, v. 148, p. 162-169, 2019. https://doi.org/10.1016/j.bej.2019.05.012
LIU, Tianzhong; WANG, Junfeng; HU, Qiang; CHENG, Pengfei; JI, Bei; LIU, Jinli; CHEN, Yu; ZHANG, Wei; CHEN, Xiaoling; CHEN, Lin; GAO, Lili; JI, Chunli; Wang, Hui. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresource Technology, v. 127, p. 2016-222, 2013. https://doi.org/10.1016/j.biortech.2012.09.100
MANTZOROU, Antonia; VERVERIDIS, Folippos. Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, v. 651, p. 3187-3201, 2019. https://doi.org/10.1016/j.scitotenv.2018.09.355
MATA, Teresa M.; MARTINS, Antònio A.; CAETANO, Nidia S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, v. 14, p. 217-232, 2010. https://doi.org/10.1016/j.rser.2009.07.020
MATAMOROS, Victor; GUTIÉRREZ, Raquel; FERRER, Ivet; GARCÍA, Joan; BAYONA, Josep M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J. Hazard. Mater., V. 288, p. 34-42, 2015. https://doi.org/10.1016/j.jhazmat.2015.02.002
MORENO OSORIO, J.H.; PINTO, G.; A. POLLIO; FRUNZO, L.; LENS, P.N.L.; ESPOSITO, G.. Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresour Bioprocess, v. 6, p. 27, 2019.
MUBARAK, M.; SHAIJA, A.; SUCHITHRA, TV. Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering, v.7, n. 4, p. 103221, 2019.
https://doi.org/10.1016/j.jece.2019.103221
NIE, Changliang; PEI, Haiyan; JIANG, Liqun; CHENG, Juan; HAN, fei. Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment. Renewable Energy, v. 122, p. 517-525, 2018. https://doi.org/10.1016/j.renene.2018.02.005
NOVOVESKÁ, Lucie; ZAPATA, Anastasia K.M.; Zabolotney, Jeffrey B.; ATWOOD, Matthew C.; SUNDSTROM, Eric R. Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, v. 18, p. 86-94, 2016. https://doi.org/10.1016/j.algal.2016.05.033
OZKAN, Altan; KINNEY, Kerry; KATZ, Lynn; BERBEROGLU, Halil. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technology, v. 114, p. 542-548, 2012. https://doi.org/10.1016/j.biortech.2012.03.055
PETER J.; SCHNURR D.; GRANT, Allen. Factors affecting algae biofilm growth and lipid production: A review. Renewable and Sustainable Energy Reviews, V. 52, P. 418-429, 2015.
https://doi.org/10.1016/j.rser.2015.07.090
PITTMAN, Jon K.; DEAN, Andew P.; OSUNDEKO, Olumayowa. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, v. 102, n. 1, p. 17-25, 2011. https://doi.org/10.1016/j.biortech.2010.06.035
POURKARIMI, Sara; HALLAJISANI, Ahmad; ALIZADEHDAKHEL, Asghar; NOURALISHAHI, Amideddin. Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis, v. 142, p. 104599, 2019.
https://doi.org/10.1016/j.jaap.2019.04.015
RAJASULOCHANA, P.; PREETHY, V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, v. 2, n. 4, p. 175-184, 2016. https://doi.org/10.1016/j.reffit.2016.09.004
RIGOBELLO, Eliane Sloboda; DANTAS, Angela Di Bernardo; DI BERNARDO, Luiz; VIEIRA. Eny Maria. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere, v. 92, p. 184-191, 2013. https://doi.org/10.1016/j.chemosphere.2013.03.010
ROGERS, JonathanN.; ROSENBERG, Julian N.; GUZMAN, Bernardo J.; OH, Victor H.; MIMBELA, Luz Elena; GHASSEMI, Abbas; BETENBAUGH, Michael J.; OYLER, George A.; DONOHUE, Marc D. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research, v. 4, p. 76-88, 2014. https://doi.org/10.1016/j.algal.2013.11.007
ROOSTAEI, Javad; ZHANG, Yongli. Spatially Explicit Life Cycle Assessment: Opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Reserch, v. 24, p. 395-402, 2017. https://doi.org/10.1016/j.algal.2016.08.008
RUAN, Yuefei; WU, Rongben; LAM, James CW; ZHANG, Kai, LAM, Paul KS. Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment. Water Research, v. 149, p.607-616, 2019. https://doi.org/10.1016/j.watres.2018.11.010
RUIZ-MARIN, Alejandro; MENDOZA-ESPINOSA, Leopoldo G.; STEPHENSON, Tom. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, v. 101, n. 1, p. 58-64, 2010. https://doi.org/10.1016/j.biortech.2009.02.076
SALAMA, E.S.; JEON, B.H.; KURADE, M.B.; ABOU-SHANAB, R.A.I.; GOVINDWAR, S.P.; LEE, S.H. Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production. Energy Convers Manag,v. 121, p. 105-112, 2016.
https://doi.org/10.1016/j.enconman.2016.05.020
SHUBA, E.S.; KIFLE, D. Microaglae to biofuels: “Promising” alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, v. 81, n. 1, p. 743-755, 2018.
https://doi.org/10.1016/j.rser.2017.08.042
SINGH, Lakhvinder; PAVANKUMAR, Asalapuram Ramachandran; LAKSHMANAN, Ramnath; RAJARAO, Gunaratna Kuttuva. Effective removal of Cu 2+ ions from aqueous medium using alginate as biosorbent. Ecol. Eng., v. 38, p. 119-124, 2012. https://doi.org/10.1016/j.ecoleng.2011.10.007
SUKACOVÁ, Kateřina; TRTÍLEK, Martin; RATAJ, Tomáš. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, v. 71, p. 55-63, 2015. https://doi.org/10.1016/j.watres.2014.12.049
SUPARMANIAM, Uganeeswary ; LAM, Man Kee ; UEMUR, Yoshimitsu; LIM, Jun Wei ; LEE, Keat Teong; SHUIT, Siew Hoong. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, v 115, p. 109361, 2019. https://doi.org/10.1016/j.rser.2019.109361
TANG, Cong-Cong; TIAN, Yu; LIANG, Heng; ZUO, Wei; WANG, Zhang-Wei; ZHANG Jun; HE, Zhang-We. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresource Technology, v. 250, p. 185-190, 2018. https://doi.org/10.1016/j.biortech.2017.11.028
TANG, Cong-Cong; TIAN, Yu; HE, Zhang-We; ZUO, Wei; ZHANG Jun. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater. Bioresource Technology, v. 265, p. 422-431, 2018. https://doi.org/10.1016/j.biortech.2018.06.033
TAN, X.B., LAM, M.K.; UEMURA, Y.; LIM, J.W.; WONG, C.Y.; LEE, K.T. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng, v. 26, p. 17-30, 2018.
https://doi.org/10.1016/j.cjche.2017.08.010
TING, H.; HAIFENG, L.; SHANSHAN, M.; ZHANG, Y.; ZHIDAN, L.; NA,D. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. International Journal Agric Biology Engergy, v. 10, p. 1-29, 2017.
https://doi.org/10.3965/j.ijabe.20171001.2705
TIWARI, Bhagyashree; SELLAMUTHU, Balasubramanian.; OUARDA, Yassini; DROGUI, Patrik; TYAGI, Rajeshwar D.; BUELNA, Gerardo. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technolology, v. 224, p. 1-12, 2017. https://doi.org/10.1016/j.biortech.2016.11.042
TRAN, C.; NOSWORTHY, N.; BILEK, M.; MCKENZIE, D. Covalent immobilization of enzymes and yeast: towards a continuous simultaneous saccharification and fermentation process for cellulosic etanol. Biomass Bioenergy, v. 81, p. 234-241, 2015.
TUZEN, M.; SARI, A. Selenium biosorption from aqueous solution by green algae biomass (Cladophora hutchinsiae): equilibrium, thermodynamic and kinetic studies.Chem. Eng. J., v. 158, p. 200-206, 2010. https://doi.org/10.1016/j.cej.2009.12.041
VAN DEN HENDE, Sofie; VERVAEREN, Han; DESMET, Sem; BOON, Nico. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnology, v. 29, n. 1, p. 23-31, 2011. https://doi.org/10.1016/j.nbt.2011.04.009
WALLS, Laura E.; VELASQUEZ-ORTA, Sharon B.; ROMERO-FRASCA, Enrique; LEARY, Peter; NOGUEZ, Isaura Yánez; LEDESMA, Maria Teresa Orta. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochemical Engineering Journal, v. 151, n. 15, p. 107319, 2019. https://doi.org/10.1016/j.bej.2019.107319
WAYNE, Chew Kit; REEN, Chia Shir; SHOW, Pau Loke; JIUN, Yap Yee; CHUAN, Ling Tau; CHANG, Lo-Shu. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Tiwan Institute of Chemical Engineers, v. 91, p. 332-344, 2018. https://doi.org/10.1016/j.jtice.2018.05.039
YUCE, Meral; NAZIR, Hasan; DONMEZ, Gönül. Advanced research on a new algae sensor determining aqueous media Pb (II) ions. Biosens Bioelectron., v. 26, p. 321-326, 2010. https://doi.org/10.1016/j.bios.2010.08.022
ZHAN; RONG, J.; WANG, Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal Hydrogen Energy, v. 42, p. 8505-8517, 2017.
https://doi.org/10.1016/j.ijhydene.2016.12.021
ZHOU, Xu; JIN, Wenbiao; TU, Renjie; GUO, Qiongjie; HAN, Song-fang; CHEN, Chuan; WANG, Qing; LIU, Wentao; JENSEN, Paul D.;WANG, Qilin. Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, v. 221, p. 502-508, 2019. https://doi.org/10.1016/j.jclepro.2019.02.260
ZHOU, Wenguang; LI, Yecong; MIN, Mim; HU, Bing; ZHANG, Hong; MA, Xiaochen; LI, Liang; CHENG, Yanling; CHEN, Paul; RUAN, Roger. Ruan. Growing wastewater-born microalga auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy, v. 98, p. 433-440, 2012. https://doi.org/10.1016/j.apenergy.2012.04.005
ZHUANG, Lin-Lan; YU, Dawei; ZHANG, Jian; LIU, Fei-fei; WU, Yin-Hu; ZHANG, Tian-Yuan; DAO, Guo-Hua; HU, Hong-Ying. The characteristics and influencing factors of the attached microalgae cultivation: A review. Renewable and Sustainable Energy Reviews, v. 94, p. 1110-1119, 2018. https://doi.org/10.1016/j.rser.2018.06.006
ZHUANG, Lin-Lan; AZIMI, Yaldah; YU, Dawei; WANG, Wen-Long; WU, Yin-Hu; DAO, Guo-Hua; HU, Hong-Ying. Enhanced attached growth of microalgae Scenedesmus. LX1 through ambient bacterial pre-coating of cotton fiber carriers. Bioresource Technolology, v. 218, p. 643-649, 2016. https://doi.org/10.1016/j.biortech.2016.07.013
Downloads
Publicado
Como Citar
Edição
Seção
Licença
As Políticas Culturais em Revista aplica a Licença Creative Commons Atribuição-Não Comercial 4.0 Internacional (CC BY-NC-SA 4.0) para os trabalhos que publica. Esta licença foi desenvolvida para facilitar o acesso aberto - ou seja, o acesso livre, imediato, e a reutilização irrestrita de trabalhos originais de todos os tipos. Nossos autores mantêm os direitos autorais mas, sob essa licença, concordam em deixar os artigos legalmente disponíveis para reutilização, sem necessidade de permissão ou taxas, para praticamente qualquer finalidade. Qualquer pessoa pode copiar, distribuir ou reutilizar esses artigos, desde que o autor e a fonte original (Políticas Culturais em Revista) sejam devidamente citados.