Activated charcoal from green coconut as an alternative to remove 2,4D from water and reduce toxicity in Lactuca sativa L



mitotic index, water pollution, cell cycle, biological indicator


Water quality is essential for the maintenance of all forms of life on the planet, since the  consumption of contaminated water can pose health risks. In this study, green coconut activated charcoal was used in the treatment of contaminated water at concentrations of 2, 5, 10 and 20 mg/L of the herbicide dichlorophenoxyacetic acid (2,4-D). In order to verify the efficiency of the adsorption process, germination bioassays and cytogenetic analyses were performed with seeds of Lactuca sativa L. as a bioindicator. The germination bioassays were carried out with a germination paper roll in triplicate, with 300 seeds per treatment. As for the cytogenetic analysis, 3000 cells were analyzed per treatment. The results showed that the green coconut activated charcoal has adsorptive potential to remove 2,4-D from water, with germination results of 89.6% for treated water, 92% for pure water, and 0% for contaminated water. Regarding the cytogenetic analysis, Mitotic Index (MI) values were high and did not differ statistically for pure and treated water samples. Yet, they were low for contaminated water. As for chromosomal abnormalities, there was a gradual increase depending on the level of exposure to the different 2,4-D concentrations. Thus, we concluded that 2,4-D is toxic to the development of lettuce seeds, and that green coconut activated charcoal was efficient in the adsorption


Não há dados estatísticos.


AKZU, Z.; KABASAKAL, E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Separation and Purification Technology, v.35, p. 223-240, 2004. Doi: http://10.1016/S1383-5866(03)00144-8.

ALVES, A.C.F.; ANTERO, R.V.P.; OLIVEIRA, S.B.; OJALA, S.A.; SCALIZE, P.S. Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environmental Science and Pollution Research, v.24, p.24850-24862, 2019. Doi:

ALVES, T.A.; PINHEIRO, F.P.; PRAÇA-FONTES, M.M.; ANDRADE-VIEIRA, L.F.; CORRÊA, K.B.; ALVES, T.A.; CRUZ, F.A.; JÚNIOR, L.V. FERREIRA, A.; SOARES, T.C.B. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Industrial Crops Products, 114, p. 59-67, 2018.

AMEL, N.; WAFA, T.; SAMIA, D.; YOUSRA, B.; ISSAM, C.; CHERAIF, I.; ATTIA, N.; MOHAMED, H. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats. Journal of Food Science and Technology, v. 53, n.3, p. 1454–1464, 2016.

AQUINO A.J.A.; TUNEGA, D.; HARBEHAUER, G.; GERZABEK, M.H.; LISCHKA, H. Interaction of the 2,4-dichlorophenoxyacetic acid herbicide with soil organic matter moieties: A theoretical study. European Journal of Soil Science, v. 5, n.4, p.889-899, 2007. Doi:

ARAGÃO, F.B.; PALMIERI, M.J.; FERREIRA, A.; COSTA, A.V.; QUEIROZ, V.T.; PINHEIRO, P.F.; NADRADE-VIEIRA, L.F. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on Lactuca sativa L. Allelopathy Journal. Haryana, v. 35, n.2, p.259-272, 2015.

AYLWARD L.L.; HAYS, S.M. Interpreting biomonitoring data for 2,4- dichlorophenoxyacetic acid: Update to Biomonitoring Equivalents and population biomonitoring data. Regulatory Toxicology and Pharmacology, v.73, n.3, p. 765-769, 2015.

AYLWARD L.L.; HAYS, S.M.Biomonitoring Equivalents (BE) dossier for 2,4- dichlorophenoxyacetic acid (2,4-D) (CAS No. 94-75-7). Regulatory Toxicology and Pharmacology, v.51 (3SUPPL.), p. 37-43, 2008. Doi:

BADERNA, D.; MAGGIONI, S.; BORIANI, E.; GEMMA, S.; MOLTENI, M.; LOMBARDO, A.; COLOMBO, A.; BORDONALI, S.; ROTELLA, G.;LODI, M.; BENFENATI, E. A combined approach to investigate the toxicity of an industrial landfill’s leachate: Chemical analyses, risk assessment and in vitro assays. Environmental Research, v. 111, n.4, p. 603-613, 2011.

BEHMEL S.; DAMOUR, M.; LUDWIG, R.; RODRIGUEZ, M.J. Water quality monitoring strategies — A review and future perspectives. Science of the Total Environment, v.571, p.1312-1329, 2016. Doi:

BOERS, D.; PORTENGEN, S.; BAS BUENO DE MESQUITA, H.; HEEDERIK, D.; VERMEULEN, R. Cause-specific mortality of Dutch chlorophenoxy herbicide manufacturing workers. Occupational and Environmental Medicine, v.67, n.1, p. 24-31, 2010.

BOONAMNUAYVITAYA V.; CHAYA, C.; TANTHAPANICHAKOON, W.; JARUDILOKKUL,S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Separation and Purification of Technology, v.35, p.11-22, 2004. Doi: 5866(03)00110-2.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. Ministério da Agricultura, Pecuária e Abastecimento. Brasilia: MAPA/ACS, 2009. 399p. Secretaria de Defesa Agropecuária. Brasília, DF: MAPA/ACS, 2009, 399 p. ISBN 978-85-99851-70-8.

BRITO, G.M.; ROLDI, L.L.; SCHETINO, L.A.; FREITAS, J.C.C.; COELHO, E.R.C. High-performance of activated biocarbon based on agricultural biomass waste applied for 2,4-D herbicide removing from water: adsorption, kinetic and thermodynamic assessments. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, v.55, n.9, p.767-782,2020. Doi:

BRITO,L.R.; OLIVEIRA, R.; ABE, F.R.; BRITO, L.B.; MOURA, D.S.; VALARES, M.C.; GRISOLIA, C.K. OLIVEIRA, D.P.; OLIVEIRA, G.A.L. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environmental Toxicology and Chemistry, v.36, n.7, p.1755-1763, 2017. Doi:

CATTANEO, R.; LORO, V.L.; SPAVENELLO, R.; SILVEIRA, F.A.; LUZ, L.; MIRON, D.S.; FONSECA, M.B.; MORAES, B.S.; CLASEN, B. Metabolic and histological parameters of silver catfish (Rhamdia quelen) exposed to commercial formulation of 2,4-dichlorophenoxiacetic acid (2,4-D) herbicide. Pesticide Biochemistry and Physiology, v.92, n.3, p.133-137,2008.

CARVALHO, M. S. S.; ANDRADE-VIEIRA, L. F.; DOS SANTOS, F. E.; CORREA, F. F.; DAS GRAÇAS CARDOSO, M.; VILELA, L. R. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Scientia Horticulturae,v. 245, p.90-98, 2019. Doi: https://doi:10.1016/j.scienta.2018.10.001.

COGGON, D.; NTANI, G.; HARRIS, E. C.; JAYAKODY, N.; PALMER, K. T. Soft tissue sarcoma, non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia in workers exposed to phenoxy herbicides: Extended follow-up of a UK cohort. Occupational and Environmental Medicine, v. 72, n.6, p.435-441, 2015.

CUSIOLI, L. F.; BEZERRA, C. D. O.; QUESADA, H. B.; ALVES BAPTISTA, A. T.; NISHI, L.; VIEIRA, M. F.; BERGAMASCO, R. Modified Moringa oleifera Lam. Seed husks as low-cost biosorbent for atrazine removal, Environmental Technology, p. 1-12,2019. Doi: 10.1080/09593330.2019.1653381.

CHEN, X.; ZHANG, H.; WAN, Y.; CHEN, X.; L.I, Y. Determination of 2,4-Dichlorophenoxyacetic acid (2,4-D) in rat serum for pharmacokinetic studies with a simple HPLC method. PLoS ONE, v. 13, n.1, p. 1-10, 2018. Doi:

CHEN, H.; ZHANG, Z.; YANG, Z.; YANG, Q.; LI, B.; BAI, Z. Heterogeneous Fenton-like Catalytic Degradation of 2,4- Dichlorophenoxyacetic Acid in Water with FeS. Chemical Engeneering Journal, v. 273, p. 481-489, 2015. Doi:

CHOI, H. D.; CHO, J. M.; BAEK, K.; YANG, J. S.; LEE, J. Y.Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon. Journal of Hazardous Materials, v.161, n. 2-3, p.1565-1568,2009. Doi:

ÇILDIR, D.S.; LIMAN, R.Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide. Environmental Science and Pollution Research, v. 27, n.16, p. 20335-20343, 2020. Doi:

COELHO, E. R. C.; BRITO, G. M. D.; FRASSON LOUREIRO, L.; SCHETTINO JR, M. A.; FREITAS, J. C. C. D. 2,4-dichlorophenoxyacetic Acid (2,4-D) Micropollutant Herbicide Removing from Water Using Granular and Powdered Activated Carbons: A Comparison Applied for Water Treatment and Health Safety. Journal of Environmental Science and health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, v. 55, p.361-375, 2019. Doi: http://doi:10.1080/03601234.2019.1705113.

CRINI, G.; LICHTFOUSE, E.; WILSON, L.; MORIN-CRINI, N. Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, v. 17, n.1, p.195-213, 2019.

DA?BROWSKI A.; PODKO?CIELNY, P.; HUBICKI, Z.; BARCZAK, M. Adsorption of phenolic compounds by activated carbonA critical review. Chemosphere, v.58, n.8, p. 1049-1070, 2005. Doi:

DAKHAKHNI, T. H.; RAOUF, G.A.; QUSTI, S.Y. Evaluation of the toxic effect of the herbicide 2, 4-D on rat hepatocytes: an FT-IR spectroscopic study. European Biophysics Journal, v.45, n.4, p. 311-320, 2016. Doi:

DODDS, W.K.; PERKIN, J.S.; GERKEN, J.E. Human impact on freshwater ecosystem services: A global perspective. Environmental Science and Technology, v.47, n.16, p. 9061-9068, 2013.

ENAN, M.R. Genotoxicity of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4- D): Higher plants as monitoring systems. American-Eurasian Journal of Sustainable Agriculture, v.3, n.3, p. 452-459, 2009.

FERNANDES, T.C.C.; MAZZEO, D.E.C.; MARIN-MORALES, M.A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistryand Physiology,v.88, n.3, p. 252–259, 2007. Doi:

FERREIRA-GUEDES, S.; MENDES, B.; LEITÃO, A.L. Degradation of 2,4-Dichlorophenoxyacetic Acid by a Halotolerant Strain of Penicillium chrysogenum: Antibiotic Production. Environmental Technology, v.33, p. 677-686, 2012. Doi: 10.1080/09593330.2011.588251.

FONSECA, M. B.; GLUSZACK, L.; MORAES, B.S.; MENEZES, C.C.; PRETTO, A.; TIERNO, M.A.; ZANELLA, R.; GONÇALVES, F.F.; LORO, V.L. The 2,4-D herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicology and Environmental Safety, v.69, n.3, p.416-420, 2008. Doi:

FREITAS, A.S.; CUNHA, I.M.F.; ANDRADE-VIEIRA, L.F.; TECHIO, V.H. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. Ecotoxicology and Environmental Safety, v.124, p.426-434, 2016. Doi:

FREYDIER L.; LUNDGREN, J.G. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles. Ecotoxicology,v. 25, n.6, p.1270-1277, 2016. Doi:

GIRI, R.R.; OZAKI, H.; OTA, S.; TANIGUCHI, S.; TAKANAMI, R. Influence of Inorganic Solids on Photocatalytic Oxidation of 2,4-Dichlorophenoxyacetic Acid with UV and TiO2 Fiber in Aqueous Solution. Desalination, v. 255, p. 9-14, 2010. Doi:

GOGGIN, D.E.; CAWTHRAY, G. R.; POWLES, S. B. 2,4-D resistance in wild radish: Reduced herbicide translocation via inhibition of cellular transport. Journal of Experimental Botany, v.67, n.11, p. 3223-3235, 2016. Doi:

GOODMAN, J.E. LOFTUS, C. T.; ZU, K. 2,4-Dichlorophenoxyacetic acid and non-Hodgkin’s lymphoma: results from the Agricultural Health Study and an updated meta-analysis. Annals of Epidemiology, v.27, n.4, p. 290-292.e5, 2017. Doi:

GRANT, W.F. Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoring environmental chemicals. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, v.426, n.2, p.107-112, 1999. Doi:

GROSSMANN, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Management Science, v. 66, n.2, p. 113-120, 2010. Doi:

GROSSMANN, K. Mediation of herbicide effects by hormone interactions. Journal of Plant Growth Regulation, v.22, p. 109-122, 2003. Doi:

HARASHIMA, H.; SCHNITTGER, A. The integration of cell division, growth and differentiation. Current Opinion in Plant Biology, v. 13, n.1, p. 66-74, 2010. Doi:

HOLT, E.A.;MILLER, S.W. Bioindicators: Using Organisms to Measure Environmental Impacts.The Nature Education, v.2, n.2, p.1-10, 2011.

HOU, J.; LIU, G. N.; XUE, W.; FU, W. J.; LIANG, B. C.; LIU, X. H. Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil. Environmental Toxicology and Chemistry, v.33, n.3, p. 671-676, 2014. Doi:

IKECHUKWU, O. R.; MADUKA, A. S.; NKIRE, K. T.; SHOYINKA, O. S.; OKONKWO, A. L.; UNEOJO, O. V. Morphometric changes, biochemical values, and kidney morphology of male West African Dwarf goats exposed to 2,4-dichlorophenoxyacetic acid (2,4-D). Comparative Clinical Pathology, v. 21, n.1, p. 91-97, 2012. Doi:

ISLAM, F.; WANG, J.; FAROOQ, M. A.; KHAN, M. S.; XU, L.; ZHU, J.; ZHOU, W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Envionment International, October, v.111, p. 332-351., 2018. Doi:

KAMARAJ, R.; DAVIDSON, D. J.; SOZHAN, G.; VASUDEVAN, S. Adsorption of 2,4-Dichlorophenoxyacetic Acid (2,4-D) fromWaterby in Situ Generated Metal Hydroxides Using SacrificialAnodes. Journal Taiwan Institute Chemical Engeneers,v. 45, n.6, p. 2943-2949, 2014.

KAMARAJ, R.; DAVIDSON, D. J.; SOZHAN, G.; VASUDEVAN, S.Adsorption of Herbicide 2-(2,4-Dichlorophenoxy) Propanoic Acid by Electrochemically Generated Aluminum Hydroxides: An Alternativeto Chemical Dosing. RSC Advances, v.5, p. 39799-39809, 2015. Doi:

KLAUNIG, J.E.; KAMENDULIS, L.M.; HOCEVAR, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, v. 38, n.1, p. 96-109, 2010. Doi:

KOUTROS, S.; SILVERMAN, D. T.; ALAVANJA, M. C.; ANDREOTTI, G.; LERRO, C. C.; HELTSHE, S.; BEANE FREEMAN, L. E. Occupational exposure to pesticides and bladder cancer risk. International Journal of Epidemiology, v.45, n.3, p. 792-805, 2016. Doi:

LACHAPELLE, A. M.; RUYGROK, M. L.; TOOMER, M.; OOST, J. J.; MONNIE, M. L.; SWENSON, J. A.; STEBBINS-BOAZ, B. The hormonal herbicide, 2,4-dichlorophenoxyacetic acid, inhibits Xenopus oocyte maturation by targeting translational and post- translational mechanisms. Reproductive Toxicology, v.23, n.1, p. 20-31, 2007. Doi:

LAJMANOVICH, R. C.; ATTADEMO, A. M.;SIMONIELLO, M. F.;POLETTA, G. L.; JUNGES, C. M.; PELTZER, P. M.; CABAGNA-ZENKLUSEN, M. C. Harmful Effects of the Dermal Intake of Commercial Formulations Containing Chlorpyrifos, 2,4-D and Glyphosate on the Common Toad Rhinella arenarum (Anura: Bufonidae). Water, Air, and Soil Pollution, v. 226, n.12, p.1-12, 2015. Doi:

LAMHAMDI, M.; BAKRIM, A.; AARAB, A.; LAFONT, R.; SAYAH, F. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies, v.33, p. 118-126, 2011. Doi:

LEE, H.; PARK, S. H.; PARK, Y. K.; KIM, S. J.; SEO, S. G.; KI, S. J.; JUNG, S. C. Photocatalytic Reactions of 2,4-Dichlorophenoxyacetic Acid Using a Microwave-Assisted Photocatalysis System. Chemical Engeneering Journal, v.278, p. 259-264, 2015.Doi:

LEME, D. M.; MARIN-MORALES, M.A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research, v. 682, n.1, p. 71-81. Doi:

MENEZES, C.; RUIZ-JARABO, I.; MARTOS-SITCHA, J. A.; TONI, C.; SALBEGO, J.; BECKER, A.; BALDISSEROTTO, B. The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen): A metabolic and endocrine approach. Aquaculture, v. 435, p. 257-264, 2015. Doi:

MICHAUD, J.P.; VARGAS, G. Relative toxicity of three wheat herbicides to two species of Coccinellidae. Insect Science, v. 17, n.5, p.434-438, 2010.

MONTEIRO, M.; SANTOS, C.; MANN, R. M.; SOARES, A. M.; LOPES, T. Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environmental and Experimental Botany, v.60, n.3, p. 421-427, 2007. Doi:

NELDER, J.A.; WEDDERBURN R.W. Generalized linear models. Journal of the Royal Statistical Society Series A, v. 135, n.3, p. 370-84, 1972. Doi:

ÖZKUL, M.; ÖZEL, Ç. A.; YÜZBA?IO?LU, D.; ÜNAL, F. Does 2,4-dichlorophenoxyacetic acid (2,4-D) induced genotoxic effects in tissue cultured Allium roots? Cytotechnology, v.68, n.6, p.2395-2405, 2016. Doi: 10.1007/s10616-016-9956-3

OHE, T.; WATANABE, T.; WAKABAYASHI, K. Mutagens in surface waters: A review. Mutation Research - Reviews in Mutation Research, v.567:(2-3 SPEC. ISS.), p. 109-149, 2004.

PALMIERI, M. J.; LUBER, J.; ANDRADE-VIEIRA, L. F.; DAVIDE, L. C. Cytotoxic and phytotoxic effects of the main chemical components of spent pot-liner: A comparative approach. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, v.763, p.30-35, 2014. Doi:

PARK, K.; KWAK I.S. Molecular effects of endocrine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere, v.79, n.9, p. 934-941, 2010. Doi:

PATEL, D. M.; JONES, R. R.; BOOTH, B. J.; OLSSON, A. C.; KROMHOUT, H.; STRAIF, K. Parental occupational exposure to pesticides, animals and organic dust and risk of childhood leukemia and central nervous system tumors: Findings from the International Childhood Cancer Cohort Consortium (I4C). International Journal of Cancer, v.146, n.4, p. 943-952, 2019. Doi: http://

PAWLOWSKI, Â.; KALTCHUK-SANTOS, E.; BRASIL, M. C.; CARAMÃO, E. B.; ZINI, C. A.; SOARES, G. L. G. Chemical composition of Schinus lentiscifolius March. essential oil and its phytotoxic and cytotoxic effects on lettuce and onion. South African Journal of Botany, v.88, p. 198-203, 2013. Doi:

RICE, G. E.; EIDE, I.; FEDER, P. I.; GENNINGS, C. Assessing human health risks using information on whole mixtures. Chemical Mixtures and Combined Chemical and Nonchemical Stressors, p.421-463, 2018. Doi:

SATARI, B.; KARIMI, K. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization, Resources, Conservation and Recycling, v.129, p.53-167, 2018.

SANDALIO, L. M.; DALURZO, H. C.; GOMEZ, M.; ROMERO?PUERTAS, M. C.; DEL RIO, L. A. Cadmium induced chances in the growth and oxidative metabolism of pea plants Journal of Experimental Botany, v.52, n.364, p. 2115-2126, 2001. Doi:

SOUSA, M, S.; SILVA, P. S.; CAMPOS, J. M. S.; VICCINI, L. F.Cytotoxic and genotoxic effects of two medicinal species of verbenaceae. Caryologia, v. 62, n.4, p. 326-333, 2009. Doi:

SHIMABUKU, Q. L.; ARAKAWA, F. S.; FERNANDES SILVA, M.; FERRI COLDEBELLA, P.; UEDA-NAKAMURA, T.; FAGUNDES-KLEN, M. R.; BERGAMASCO, R. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles. Environmental Technology (United Kingdom), v.38, n.16, p. 2058-2069, 2016. Doi:

STEBBINS?BOAZ, B.; FORTNER, K.; FRAZIER, J.; PILUSO, S.; PULLEN, S.; RASAR, M.; WINGER, E. Oocyte Maturation in Xenopus laevis Is Blocked by the Hormonal Herbicide, 2,4-Dichlorophenoxy Acetic Acid. Molecular Reproduction and Development, v.67, n.2, p. 233-242. Doi:

TAN, Z.; ZHOU, J.; CHEN, H.; ZOU, Q.; WENG, S.; LUO, T.; TANG, Y. Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro. Journal of Toxicological Sciences, v. 41, n.4, p.543-549, 2016. Doi:

TANNER, C. M.; ROSS, G. W.; JEWELL, S. A.; HAUSER, R. A.; JANKOVIC, J.; FACTOR, S. A.; LANGSTON, J. W. Occupation and Risk of Parkinsonism. Archives of Neurology, v. 66, n. 9, p. 1106-1113, 2009. Doi:

TIGRE, R. C.; SILVA, N. H.; SANTOS, M. G.; HONDA, N. K.; FALCAO, E. P. S.; PEREIRA, E. C.Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicology and Environmental Safety,v. 84, p. 125–132, 2012. Doi:

VIEIRA, L.F.A.; SILVEIRA, G.L. Cyto(geno)toxic endpoints assessed via cell cycle bioassays in plant models. In: T. A. ÇELIK, ed. Cytotoxicity. London: IntechOpen, pp. 117-129, 2018

VIEIRA, C.; MARCON, C.; DROSTE, A. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. Brazilian Journal of Biology, v.84, e257039, 2022. Doi:

ZAFRA-LEMOS, L.; CUSIOLI, L. F.; BERGAMASCO, R.;BORIN-CARVALHO, L. A.; DE BRITO PORTELA-CASTRO, A. L. Evaluation of the genotoxic and cytotoxic effects of exposure to the herbicide 2,4-dichlorophenoxyacetic acid in Astyanaxlacustris (Pisces, Characidae) and the potential for its removal from contaminated water using a biosorbent. Mutation Research – Genetic Toxicology and Environmental Mutagenesis, v.865, p.1-8, 2021.

WANG, C.; XIAO, H.; ZHAO, L.; LIU, J.; WANG, L. ZHANG, F.; SHI, Y.; DU D . The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of aciddeposition. Ecotoxicology, v.25, n.3, p. 555-562, 2016. Doi:

WANG H.; XU J.; LIU, X.; SHENG, L. Preparation of straw activated carbon and its application in wastewater treatment: a review, Journal of Cleaner Production, v. 283,(124671), p.1-19, 2020. Doi:

WHO. Water quality and health strategy 2013-2020 (2012) World Health Organization.




Como Citar

Lazarin Romão, J., Cusioli, L. F., Lanças Gomes, R. ., de Brito Portela Castro , A. L. ., Bergamasco, R. ., & Guttierres Gomes , R. . (2023). Activated charcoal from green coconut as an alternative to remove 2,4D from water and reduce toxicity in Lactuca sativa L. Revista Geama, 9(2), 53–61. Recuperado de