Kinetics and methane generation potential from dog waste through anaerobic digestion
Palavras-chave:
animal waste, biogas, kinetic models, methane potencial, energy recoveryResumo
The high and growing number of dogs present in the urban environment and the consequent generation of dog waste (DW) has as a problem the emergence and spread of zoonotic diseases due to inadequate disposal in effluent treatment systems, sanitary landfills, and urban drainage. Disposal of these wastes is often neglected due to the false perception of low impact when evaluating the quantities generated in a single household. An option for the treatment of these residues is anaerobic digestion (AD) with the consequent production of methane (CH4). This study determined the methane generation potential of DW, also testing the influence of the use of sodium bicarbonate (NaHCO3) as alkalizing AD in residue tests in addition to bicarbonate (DWb). The methane potential resulted in 99.63 NmL.gVS-1 (DWb) and 123.79 NmL.gVS-1 (DW). The insertion of sodium bicarbonate (NaHCO3) did not present an advantage in terms of improvement in the methane generation potential or the concentration of methane in the biogas. Five kinetic models were tested, all of which were compatible with the experimental data obtained. However, the Cone model was the one that presented the best fit for all configurations (DWb and DW) tested.Downloads
Referências
ABU-REESH, I.M. Kinetics of anaerobic digestion of labaneh whey in a batch reactor. Afr. J. Biotechnol. v. 13, n. 16, p. 1745-1755. 2014. DOI: https://doi.org/10.5897/AJB2013.13310
AFONSO, M.V.R.; JESUS, N.G.; OLIVEIRA, N.S.; RABELO, W.O.; JORGE, A.L.T.A.; ALMEIDA, G.M. Evaluation and nutritional composition of dry feed for adult dogs. PUBVET, v. 15, p. 1-7, 2021. DOI: https://doi.org/10.31533/pubvet.v15n07a853.1-7
ANGELIDAKI, I.; ALVES, M.; BOLZONELLA, D.; BORZACCON, I.L.; CAMPOS, J.L.; GUWY, A.J.; KALYUZHNYI, S.; JENICEK, P.; VAN LIER, J.B.. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. v. 9, p. 927-934, 2009. DOI: https://doi.org/10.2166/ wst.2009.040.
ALC NTARA, P.B. Avaliação da influência da composição de resíduos sólidos urbanos no comportamento de aterros simulados. 2007.
BAJPAI, P. Anaerobic Technology in Pulp and Paper Industry, Springer Briefs in Applied Sciences and Technology. 2017.
CARABEO-PÉREZ, A.; ODALES-BERNAL, L.; LÓPEZ-DÁVILA, E.; JIMÉNEZ, J. Biomethane potential from herbivorous animal’s manures: a Cuban case study. Journal of Material Cycles and Waste Management, v. 23, n. 4, p. 1404-1411. 2021. DOI: https://doi.org/10.1007/s10163-021-01220-9.
CHERNICHARO, C.A.L. Anaerobic Reactors: Principles of Biological Treatment of Wastewater. Belo Horizonte: UFMG, 5. 2008.
COLATTO, L.; LANGER, M. Biodigestor–resíduo sólido pecuário para produção de energia. Unoesc & Ciência–ACET, v. 2, n. 2, p. 119-128. 2011.
DOLLHOFER, V.; PODMIRSEG, S.M.; CALLAGHAN, T.M.; GRIFFITH, G.W.; FLIEGEROVA, K. Anaerobic fungi and their potential for biogas production. Adv. Biochem. Eng. Biotechnol. v. 151, p. 41-61, 2015. DOI: https://doi.org/10.1007/978-3-319-21993-6_2.
DOS PASSOS, A.J.; MARTINS, V. The emergency of Zoonoses Transmitted by Wildlife. Proceedings of the Inter-institutional Seminar on Teaching, Research, and Extension, UNICRUZ: Cruz Alta, p. 2-8. 2020.
FRANKE-WHITTLE, I.H.; WALTERA, A.; EBNERB, C.; INSAM, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. v. 34, p. 2080-2089, 2014. DOI: https://doi.org/10.1016/j.wasman.2014.07.020.
GERARDI, M.H. The Microbiology of Anaerobic Digesters, first ed. Wiley, Somerset NJ. 2003.
GUERI, M.V.D.; SOUZA, S.N.M.; KUCZMAN, O.; SCHIRMER, W.N.; BURATTO, W.G.; RIBEIRO, C.B.; BESINELLA, G.B. Anaerobic digestion of food residues using tests BMP. BIOFIX Scientific Journal. v. 3, p. 08-16, 2018. DOI: https://doi.org/10.5380/biofix.v3i1.55831
IVANOVA, L.K.; RICHARDS, D.J.; SMALLMAN, D.J. The long-term settlement of landfill waste. Proceedings of the Institution of Civil Engineers- Waste Resource Manage. v. 161, p. 121-133., 2008 DOI: https://doi.org/10.1680/warm.2008.161.3.121.
LEE, J.; HWANG, S. Single and combined inhibition of Methanosaeta concilii by ammonia, sodium ion, and hydrogen sulfide. Bioresour. Technol. v. 281, p. 401–411, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.02.106.
LEE, J.; KIM, E.; HWANG, S. Effects of inhibitions by sodium ion and ammonia and different inocula on acetate-utilizing methanogenesis: methanogenic activity and succession of methanogens. Bioresour. Technol. v. 334, p. 125-202, 2021. DOI: https://doi.org/ 10.1016/j.biortech.2021.125202.
LEE, J.; HWANG, S. Single and combined inhibition of Methanosaeta concilii by ammonia, sodium ion, and hydrogen sulfide. Bioresour. Technol. v. 281, p. 401–411, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.02.106.
LIN, L.; XU, F.; GE, X.; LI, Y. Improving the sustainability of organic waste management practices in the food energy water nexus: a comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Ver. v. 89, p. 151-167, 2018. DOI: https://doi.org/10.1016/j.renene.2012.01.092
LIU, X.; GAO, X.; WANG, W.; ZHENG, L.; ZHOU, Y.; SUN, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable energy, v. 44, p. 463-468, 2012. DOI:. https://doi.org/10.1016/j.renene.2012.01.092
MACEDO JÚNIOR, A.M. Covid-19: public calamity. Medicus. v. 2. 2020. DOI: https://doi.org/10.6008/CBPC2674-6484.2020.001.0001
MARTÍNEZ-SABATER, E.; GARCÍA-MUÑOZ, M.; BONETE, P.; RODRIGUEZ, M.; SÁNCHEZ-GARCÍA, F. B.; PÉREZ-MURCIA, M. D.; MORAL, R. Comprehensive management of dog faeces: Composting versus anaerobic digestion. Journal of environmental management, v. 250, p. 109-437, 2019. DOI:. https://doi.org/10.1016/j.jenvman.2019.109437
MCCARTY, P.L. Anaerobic Waste Treatment Fundamentals. Public Works, p. 325–344, 1964.
METCALF, EDDY. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill Education, New York. 2016.
MORAIS, N.W.S.; COELHO, M.M.H.; SILVA, A.D.S.; SILVA, F.S.S.; FERREIRA, T.J.T.; PEREIRA, E.L.; DOS SANTOS, A.B Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture. Environmental Pollution, v. 280, 116876., 2021. DOI: https://doi.org/10.1016/j.envpol.2021.116876
NEMIROFF, L.; PATTERSON, J. Design, testing, and implementation of a large-scale urban dog waste composting program. Compost Sci. Util, v. 15, p. 237-242, 2007. DOI:. https://doi.org/10.1080/1065657X.2007.10702339
OH, G.; ZHANG, L.; JAHNG, D.. Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. J. Chem. Technol. Biotechnol. v. 83, n. 9, p. 1204–1210, 2008. https://doi.org/10.1002/jctb.1923.
OKOROIGWE, E.C.; IBETO, C.N.; EZEMA, C.G. Experimental study of anaerobic digestion of dog waste. Sci. Res. Essays, 9, 121-127, 2014. DOI: https://doi.org/10.5897/SRE2013.5705
OLIVEIRA, L.R.G.; SANTOS FILHO, D.A.; VASCONCELOS, K.C.; LUCENA, T.V.; JUCA, J.F.T.; SANTOS, A.F.M.S. Methanization potential of anaerobic biodigestion of solid food waste. Agriamb, v. 22, p. 69–73, 2018. DOI: https://doi.org/10.1590/1807–1929/agriambi. v22n1p69-73.
PARRA-OROBIO, B. A.; ANGULO-MOSQUERA, L. S.; LOAIZA-GUALTERO, J. S.; TORRES-LÓPEZ, W. A.; & TORRES-LOZADA, P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. Journal of environmental chemical engineering, v. 6, n. 1, p. 1529-1535, 2018. DOI: https://doi.org/10.1016/j.jece.2018.01.048
PENTEADO, M.C.; SCHIRMER, W.N.; DOURADO, D.C.; GUERI, M.V.D. Analysis of biogas generation potential from anaerobic biodigestion of vinasse and sugarcane bagasse. BIOFIX Scientific Journal. v. 3, p. 26-33, 2018. DOI: https://dx.doi.org/10.5380/biofix.v3i1.56013
RODRÍGUEZ, A.; ÁNGEL, J.; RIVERO, E.; ACEVEDO, P.; SANTIS, A.; ROJAS, I. C.; HERNÁNDEZ, M. Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste, and cocoa industry residues in Colombia. Chemical engineering transactions, v. 57, p. 55-60, 2017. DOI: https:// doi.org/10.3303/CET1757010
RAPOSO, F.; DE LA RUBIA, M.A.; BORJA, R.; ALAIZ, M. Assessment of a modified and optimized method for determining Chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta, v. 76, p. 448-453, 2008. DOI: https:// doi.org/10.1016/j.talanta.2008.03.030
SANDBERG, M.; AHRING, B.K. Anaerobic treatment of fish-meal process wastewater in a UASB reactor at high pH. Appl. Microbiol. Biotechnol. v. 36, p. 800-804, 1992. DOI: .https://doi.org/10.1007/BF00172198.
SANTOS, L.A.; VALENÇA, R.B.; SILVA, L.C.S.; HOLANDA, S.H.B.; SILVA, A.F.V.; JUCÁ, J.F.T.; SANTOS, A.F.M.S. Methane Generation potential through anaerobic digestion of fruit waste. Journal Of Cleaner Production. v. 256, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.120389
SANTOS, M.D.; BRAGA, D.V.V. Synanthropic Animals X Transmission of Zoonoses: Perception of Residents of the Central Hinterland of Pernambuco. VI International Congress of Agricultural Sciences. Cointer Pdvagro, 2021. ISSN: 2526-7701. DOI: 10.31692/2526-7701.
SANTOS FILHO, D.A.; OLIVEIRA, L.R.G.; SCHIRMER, W.N.; MOTTA SOBRINHO, M.A.; JUCA, J.F.T.; VASCONCELOS, T.L. Evaluation of biogas production from anaerobic co-digestion of organic solid waste and residual glycerin. Biofix v. 3, p. 260–266, 2018. DOI: https:// doi.org/10.5380/biofix. v3i2.59938.
SANTOS, E. B.; NARDI JUNIOR, G. Produção de biogás a partir de dejetos de origem animal. Tekhne e Logos, v. 4,. n. 2, p. 80-90, 2020.
SILVA, T.H.L.; SANTOS, L.A.; OLIVEIRA, C.R.M.; PORTO, T.S.; JUCÁ, J.F.T.; SANTOS, A.F.D.M.S. Determination of methane generation potential and evaluation of kinetic models in poultry wastes. Biocatal. Agric. Biotechnol. v. 32, 101936, 2021. DOI: https://doi.org/10.1016/j.bcab. 2021.101936.
SILVA, T.H.L.; SANTOS, L.A.; JUCÁ, J.F.T.; PORTO, T.S.; SANTOS, A.F.M.S. Determination of poultry litter methane potential through assay BMP (Biochemical Methane Potential). Journal GEAMA – Environmental sciences and biotechnology. ISSN: 2447-0740. v. 5, p. 10-19, 2019.
SILVA, J.S.; MENDES, J.S, CORREIA, J.A.C.; ROCHA, M.V.P.; MICOLI, L. Cashew apple bagasse is a new feedstock for hydrogen production using a dark fermentation process. J Biotechnol v. 286, p. 71–78, 2018. DOI: https://doi.org/10.1016/j. jbiotec.2018.09.004
VALENÇA, R.B.; SANTOS, L.A.; FIRMO, A. L.B.; SILVA, L.C.S.; LUCENA, T.V.; SANTOS, A.F.M.S.; JUCÁ, J.F.T. Influence of sodium bicarbonate (NaHCO3) on the methane generation potential of organic food waste. J. Clean. Prod. v. 317, 128390, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.128390
VALERO, D.; ALZATE-GAVIRIA, L.; MONTES, J. A.; RICO, C. Influence of a conductive material and different anaerobic inocula on biochemical methane potential of substrates from alcoholic beverage production. Waste and Biomass Valorization, v. 11, n. 11, p. 5957-5964, 2020. DOI:
https://doi.org/10.1007/s12649-019-00834-3
VAN SOEST, P.J. Nutritional Ecology of the Ruminant, 2ed. Cornell University Press/Constock Publish, Ithaca, 1994.
WHO - International Reference Center for Waste Disposal. Methods of Analysis of Sewage Sludge Solid Wastes and Compost (Switzerland). 1978.
ZANELLA, J.R.C. Emerging and reemerging zoonoses and their importance for animal health and production l. Brazilian agricultural research. v. 51, p. 510-519, 2016.
ZHAO, C.; YAN, H.; LIU, Y.; HUANG, Y.; ZHANG, R.; CHEN, C.; LIU, G. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste Manag. v. 52, p. 295-301, 2016. DOI: https://doi.org/10.1016/j.wasman.2016.03.028.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista Geama
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As Políticas Culturais em Revista aplica a Licença Creative Commons Atribuição-Não Comercial 4.0 Internacional (CC BY-NC-SA 4.0) para os trabalhos que publica. Esta licença foi desenvolvida para facilitar o acesso aberto - ou seja, o acesso livre, imediato, e a reutilização irrestrita de trabalhos originais de todos os tipos. Nossos autores mantêm os direitos autorais mas, sob essa licença, concordam em deixar os artigos legalmente disponíveis para reutilização, sem necessidade de permissão ou taxas, para praticamente qualquer finalidade. Qualquer pessoa pode copiar, distribuir ou reutilizar esses artigos, desde que o autor e a fonte original (Políticas Culturais em Revista) sejam devidamente citados.