Atividade dos genes relacionados à pluripotência em ovinos

Autores

  • Priscila Germany Côrrea Silva Universidade Federal Rural de Pernambuco (UFRPE)
  • Marcelo Tigre Moura Universidade Federal Rural de Pernambuco (UFRPE)
  • Valeska Andrea Ático Braga Universidade Federal Rural de Pernambuco (UFRPE)
  • José Carlos Ferreira Silva Universidade Federal Rural de Pernambuco (UFRPE)
  • Pabola Santos Nascimento Universidade Federal Rural de Pernambuco (UFRPE)
  • Ludymila Furtado Cantanhêde Universidade Federal Rural de Pernambuco (UFRPE)
  • Maiana Silva Chaves Universidade Federal Rural de Pernambuco (UFRPE)
  • Marcos Antonio Lemos Oliveira

DOI:

https://doi.org/10.26605/medvet-n2-1745

Palavras-chave:

Ovis aries, totipotência, embriogênese, embriologia

Resumo

Embriões antes da implantação possuem células pluripotentes, ou seja, células que apresentam a capacidade de se diferenciar em todos os tecidos que compõem o feto. O controle da pluripotência em nível molecular é estabelecido por diversos fatores, entre eles, os genes relacionados à pluripotência (GRPs). Estes genes contribuem para inibição do processo de diferenciação celular e manutenção da viabilidade de células pluripotentes. No entanto, apesar do crescente conhecimento sobre as funções dos GRPs em camundongos e humanos, pouco se conhece sobre a expressão espaço-temporal e funções dos GRPs em outras espécies, incluindo ovinos. Evidências em bovinos, humanos e camundongos demonstram que GRPs podem apresentar mecanismos de ação diferentes entre as espécies. O objetivo da revisão foi analisar a atividade dos GRPs em ovinos através do perfil de expressão espaço-temporal e funções, bem como apresentar alternativas para acelerar o entendimento da pluripotência na espécie.

Downloads

Não há dados estatísticos.

Referências

Au, K.F.; Sebastiano, V. The transcriptome of human pluripotent stem cells. Current Opinion in Genetics and Development, 28: 71-77, 2014.

Avilion, A.A.; Nicolis, S.K.; Pevny, L.H.; Perez, L.; Vivian, N.; Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17: 126-140, 2003.

Bao, L.; He, L.; Chen, J.; Wu, Z.; Liao, J.; Rao, L.; Ren, J.; Li, H.; Zhu, H.; Qian, L.; Gu, Y.; Dai, H.; Xu, X.; Zhou, J.; Wang, W.; Cui, C.; Xiao L. Reprogramming of ovine adult fibroblasts to pluripotency via druginducible expression of defined factors. Cell Research, 21: 600- 608, 2011.

Basse, A.L.; Dixen, K.; Yadav, R.; Tygesen, M.P.; Qvortrup, K.; Kristiansen, K.; Quistorff, B.; Gupta, R.; Wang, J.; Hansen, J.B. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling. BMC Genomics, 19(215): 2015.

Berg, D.K.; Smith, C.S.; Pearton, D.J.; Wells, D.N.; Broadhurst, R.; Donnison M.; Pfeffer, P.L. Trophectoderm lineage determination in cattle. Developmental Cell, 20: 244-255, 2011.

Bernardi, M.L; Cotinot, C.; Payen, E.; Delouis, C. Transcription of Y- and X-Linked Genes in Preimplantation Ovine Embryos. Molecular Reproduction and Development, 45: 132138, 1996.

Boiani, M.; Cibelli, J.B. What we can learn from single-cell analysis in development. Molecular Human Reproduction, 22: 160-171, 2016.

Bortvin, A.; Goodheart, M.; Liao, M.; Page, D.C. Dppa3 / Pgc7 / stella is a maternal factor and is not required for germ cell specification in mice. BMC Developmental Biology, 4: 15, 2004.

Bowles, J.; Teasdale, R.P.; James, K.; Koopman, P. Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenetic and Genome Research, 101:261-265, 2003.

Boyer, L.A.; Plath, K.; Zeitlinger, J.; Brambrink, T.; Medeiros, L.A.; Lee, T.I.; Levine, S.S.; Wernig, M.; Tajonar, A.; Ray, M.K.; Bell, G.W.; Otte, A.P.; Vidal, M.; Gifford, D.K.; Young, R.A.; Jaenisch, R. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122: 947-956, 2005.

Bradley, A.; Evans M.; Kaufman, M.H; Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309: 255-256, 1984.

Brus, M.; Meurisse, M.; Gheusi, G.; Keller, M.; Lledo, P.M.; Lévy, F. Dynamics of olfactory and hippocampal neurogenesis in adult sheep. Journal of Comparative Neurology, 521: 169-188, 2013.

Buehr, M.; Meek, S.; Blair, K.; Yang, J.; Ure, J.; Silva, J.; Mclay, R.; Hall, J.; Ying, Q.L.; Smith, A. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135: 1287-1298, 2008.

Capecchi, M.R. Altering the genome by homologous recombination. Science, 244: 1288-1292, 1989.

Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 6: 507-512, 2005.

Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113: 643-655, 2003.

Colitti, M.; Farinacci, M. Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue and Cell, 41: 326-333, 2012.

Crispo, M.; Mulet, A.P.; Tesson, L.; Barrera, N.; Cuadro, F.; dos Santos-Neto, P.C.; Nguyen, T.H.; Crénéguy, A.; Brusselle, L.; Anegón, I.; Menchaca, A. Efficient Generation of Myostatin Knock-Out Sheep Using

CRISPR/Cas9 Technology and croinjection into Zygotes. PLoS One, 10(e0136690): 2015.

Djosez, M.; Krumenacker, J.S.; Zitur, L.J.; Passeri, M.; Chu, L.F.; Songyang, Z.; Thomson, J.A.; Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 133: 1162-1174, 2008.

Dong, F.; Ford, S.P.; Nijland, M.J.; Nathanielsz, P.W.; Ren, J. Influence of maternal undernutrition and overfeeding on cardiac ciliary neurotrophic factor receptor and ventricular size in fetal sheep. Journal of Nutritional Biochemestry, 19: 409-414, 2008.

Ezashi, T.; Yuan, Y.; Roberts, R.M. Pluripotent Stem Cells from Domesticated Mammals. Annual Review of Animal Biosciences, 4: 223-253, 2016.

Farrugia, M.K.; Vanderbilt, D.B.; Salkeni, M.A.; Ruppert, J.M. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Research, 76: 1677-1682, 2016.

Galan-Caridad, J.M.; Harel, S.; Arenzana, T.L.; Hou, Z.E.; Doestsch, F.K.; Mirny, L.A.; Reizis, B. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell, 129: 345-357, 2007.

Goissis, M.D.; Cibelli, J.B. Functional characterization of SOX2 in bovine preimplantation embryos. Biology of Reproduction, 90(30): 2014.

Han, J.; Mistriotis, P.; Lei, P.; Wang, D.; Liu, S.; Androids, S.T. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells, 30: 2746-2759, 2012.

Heng, J.C.; Feng, B.; Han, J.; Jiang, J.; Kraus, P.; Ng, J.H.; Orlov, Y.L.; Huss, M.; Yang, L.; Lufkin, T.; Lim, B.; Ng, H.H. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6: 167174, 2010.

Hosseini, S.M.; Moulavi, F.; Tanhaie-Vash, N.; Asgari, V.; Ghanaei, H.R.; Abedi-Dorche, M.; Jafarzadeh, N.; Gourabi, H.; Shahverdi, A.H.; Dizaj, A.V.; Shirazi, A.; NasrEsfahani, M.H. The Principal Forces of Oocyte Polarity Are Evolutionary Conserved but May Not Affect the Contribution of the First Two Blastomeres to the Blastocyst Development in Mammals. PLoS One, 11(e0148382): 2016.

Jauch, R.; Aksoy, I.; Hutchins, A.P.; Ng, C.K.; Tian, X.F.; Chen, J.; Palasingam, P.; Robson, P.; Stanton, L.W.; Kolatkar, P.R. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells, 29: 940-951, 2011.

Kiemer, V.; Dequiedt, F.; Masengo, R.; Cleuter, Y.; Briclet,D.; Ciesiolka, M.; Broeke, A.V.D.; Willems, L.; Kettmann, R.; Burny, A.; Droogmans, L. The Cloning Sequencing of an Ovine c-Myc cDNA. DNA sequence: The Journal of DNA Sequencing and Mapping, 7: 235-238, 1997.

Kim, M.S.; Sakurai, T.; Bai, H.; Bai, R.; Sato, D.; Nagaoka, K.; Chang, K.T.; Godkin, J.D.; Min, K.S.; Imakawa, K. Presence of Transcription Factor OCT4 limits Interferon-tau Expression during the Preattachment Period in Sheep. Asian Australasian Journal of Animal Science, 26: 638-645, 2013. Li, P.; Tong, C.; Mehrian–Shai, R.; Jia, L.; Wu, N.; Yan, Y.; Maxson, R.E.; Schulze, E.N.; Song, H.; Hsieh, C.L.; Pera, M.F.; Ying, Q.L. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135: 1299- 1310, 2008.

Li, Y.X.; Zhang, J.; Qian, Y.; Meng, C.H.;Wang, H.L.; Tao, X.J.; Zhong, S.; Cao, S.X.; Li, Q.F. Molecular characterization, expression, polymorphism of NR5A2 and its relationship with litter size in Hu sheep. Genetics and Molecular Research, 14: 12765-12775, 2015.

Liu, C.X.; Wang, W.L.; Zhao, R.Y.; Wang, H.T.; Liu, Y.Y.; Wang, S.Y.; Zhou, H.M. Isolation, culture, and characterization of primordial germ cells in Mongolian sheep. In Vitro Cellular & Developmental Biology - Animal, 50: 207-213, 2014.

Loh, Y.H.; Wu, Q.; Chew, J.L.; Vega, V.B.; Zhang, W.; Chen, X.; Bourque, G.; George, J.; Leong, B.; Liu, J.; Wong, K.Y.; Sung, K.W.; Lee, C.W.; Zhao, X.D.; Chiu, K.P.; Lipovich, L.; Kuznetsov, V.A.; Robson, P.; Stanton, L.W.; Wei, C.L.; Ruan, Y.; Lim, B.; Ng, H.H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38: 431-440, 2006.

Ma, L.B.; He, X.Y.; Wang, F.M.; Cao, J.W.; Cheng, T. The development and expression of pluripotency genes in embryos derived from nuclear transfer and in vitro fertilization. Zygote, 22: 540-548, 2014.

Masui, S.; Ohtsuka, S.; Yagi, R.; Takahashi, K.; Ko, M.S.; Niwa, H. Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Developmental Biology, 8: 112, 2008.

McCreath, K.J.; Howcroft, J.; Campbell, K.H.; Colman, A.; Schnieke, A.E.; Kind, A.J. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405: 1066-1069, 2000.

Miao, X.; Luo, Q.; Zhao, H.; Qin, X. Co-expression analysis and identification of fecundity- related long non-coding RNAs in sheep ovaries. Science Reports, 16(39398): 2016.

Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113: 631-642, 2003.

Moradi, M.; Riasi, A.; Ostadhosseini, S.; Hajian, M.; Hosseini, M.; Hosseinnia, P.; Nasr- Esfahani, M.H. Expression profile of FGF receptors in preimplantation ovine embryos and the effect of FGF2 and PD173074. Growth Factors, 33: 393-400, 2015.

Moura, M.T. Pluripotency and cellular reprogramming. Anais da Academia Pernambucana de Ciência Agronômica, 8: 138-168, 2012.

Natesampillai, S.; Kerkvliet, J.; Leung, P.C.; Veldhuis, J.D. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. American Journal Physiology Endocrinology Metabolism, 294: e385e391, 2008.

Nichols, J.; Zevnik, B.; Anastassiadis, K.; Niwa, H.; Klewe-Nebenius, D.; Chambers, J.; Schӧler, H.; Smith, A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95: 379-391, 1998.

Ogorevc, J.; Orehek, S.; Dovč, P. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. Journal of Animal Science and Biotechnology, 7(10): 2016.

Parte, S.; Bhartiya, D.; Patel, H.; Daithankar, V.; Shaun, A.; Zaveri, K.; Hinduja, I. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. Journal of Ovarian Research, 25(25): 2014.

Payen, E.; Saidi-Mehtar, N.; Pailhoux, E.; Cotinot, C. Sheep gene mapping: assignment of ALDOB, GYPW, VVT and SOX2 by somatic cell hybrid analysis. Animal Genetics, 26: 331-333, 1995.

Payen, E.; Pailhoux, E.; Gianquinto, L.; Hayes, H.; Le Pennec, N.; Bezard, J.; Cotinot, C. The ovine SOX2 gene: sequence, chromosomal localization and gonadal expression. Gene and International Journal on Genes and Genomes, 189: 143-147, 1997.

Payer, B.; Saitou, M.; Barton, S.C.; Thresher, R.; Dixon, J.P.; Zahn, D.; Colledge, W.H.; Carlton, M.B.; Nakano, T.; Surani, M.A. Stella is a maternal effect gene required for normal early development in mice. Current Biology, 13: 2110-2117, 2003.

Peñagaricano, F.; Zorrilla, P.; Naya, H.; Robello, C.; Urioste, J.I. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. Journal of Applied Genetics, 53: 99-106, 2012.

Petersen, B.; Niemann, H. Molecular scissors and their application in genetically modified farm animals. Transgenic Research, 24: 381-396, 2015.

Pierre, A.; Gautier, M.; Callebaut, I.; Bontoux, M.; Jeanpierre, E.; Pontarotti, P.; Monget, P. Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed DC1/DPPA5/ECAT1/OOEP gene family. Genomics, 90: 583-594, 2007.

Rosner, M.H.; Vigano, M.A.; Ozato, K.; Timmons, P.M.; Poirier, F.; Rigby, P.W.; Staudt, L.M. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature, 345: 686-692, 1990.

Rossant, J. Stem cells and lineage development in the mammalian blastocyst. Reproduction, Fertility and Development, 19: 111-118, 2007. Rossant, J. Developmental biology: A mouse is not a cow. Nature, 471: 457-458, 2011.

Rossant, J. Making the Mouse Blastocyst: Past, Present, and Future. Current Topics in Developmental Biology, 117: 275-288, 2016.

Salabi, F.; Nazari, M.; Cao, W.G. Cell culture, sex determination and single cell cloning of ovine transgenic satellite cells in vitro. Journal of Biological ResearchThessaloniki, 21(22): 2014.

Sanna, D.; Sanna, A.; Mara, L.; Pilichi, S.; Mastinu, A.; Chessa, F.; Pani, L.; Dattena, M. Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biology International, 34: 5360, 2010. Sartori, C.; DiDomenico, A.I.; Thomson, A.J.; Milne, E.; Lillico, S.G.; Burdon, T.G.; Whitelaw, C.B. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cellular Reprogramming, 14: 8-19, 2012. Schöler, H.R.; Hatzopoulos, A.K.; Balling, R.; Suzuki, N.; Gruss, P. A family of octamer- specific proteins present during mouse embryogenesis: evidence for germline- specific expression of an Oct factor. EMBO Journal, 8: 2543-2550, 1989.

Scognamiglio, R.; Cabezas-Wallscheid, N.; Thier, M.C.; Altamura, S.; Reyes, A.; Prendergast, Á.M.; Baumgärtner, D.; Carnevalli, L.S.; Atzberger, A.; Haas, S.; Von Paleske, L.; Boroviak, T.; Wӧrsdӧrfer, P.; Essers, M.A.; Kloz, U.; Eisenman, R.N.; Edenhofer, F.; Bertone, P.; Huber, W.; Van Der Hoeven, F.; Smith, A.; Trumpp, A. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 164: 668-680, 2016.

Shi, H.; Fu, Q.; Li, G.; Ren, Y.; Hu, S.; Ni, W.; Guo, F.; Shi, M.; Meng, L.; Zhang, H.; Qiao, J.; Guo, Z.; Chen, C. Roles of p53 and ASF1A in the Reprogramming of Sheep Kidney Cells to Pluripotent Cells. Celular Reprogramming, 17: 441-452, 2015.

Shirazi, A.; Heidari, M.; Shams-Esfandabadi, N.; Momeni, A.; Derafshian, Z. Overexpression of signal transducers and activators of transcription in embryos derived from vitrified oocytes negatively affect Ecadherin expression and embryo development. Cryobiology, 70: 239-245, 2015. Silva, P.G.C. Análise interespecífica da expressão de genes relacionados à pluripotência durante o desenvolvimento embrionário. 2017. 72 f. Dissertação (Mestrado em Ciência Veterinária) - Programa de Pós-Graduação em Ciência Veterinária, Universidade Federal Rural de Pernambuco.

Smith, A.G. Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17: 435-462, 2001.

Song, G.; Satterfield, M.C.; Kim, J.; Bazer, F.W.; Spencer, T.E. Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy. Reproduction, 137: 553-565, 2009.

Su, X.; Ling, Y.; Liu, C.; Meng, F.; Cao, J.; Zhang, L.; Zhou, H.; Liu, Z.; Zhang, Y. Isolation, Culture, Differentiation, and Nuclear Reprogramming of Mongolian Sheep Fetal Bone Marrow-Derived Mesenchymal Stem Cells. Cellular Reprogramming, 17: 288296, 2015.

Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663-676. 2006.

Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861-872, 2007.

Wang, J.; Rao, S.; Chu, J.; Shen, X.; Levasseur, D.N.; Theunissen, T.W.; Orkin, S.H. A protein interaction network for pluripotency of embryonic stem cells. Nature, 444: 364- 368, 2006.

Wang, Z.; Zhang, W.; Ji, J.L.; Gao, Q.X.; Xiao, S.H.; Wang, F. Effects of ghrelin on developmental competence and gene expression of in vitro fertilized ovine embryos, Theriogenology, 79: 695-701, 2013a.

Wang, L.H.; Zhang, W.; Ji, J.L.; Gao, Q.X.; Xiao, S.H.; Wang, F. Molecular characterization and expression analysis of the Lrh-1 gene in Chinese Hu sheep. Genetics and Molecular Research, 12: 1490-1500, 2013b.

Wang, X.; Niu, Y.; Zhou, J.; Yu, H.; Kou, Q.; Lei, A.; Zhao, X.; Yan, H.; Cai, B.; Shen, Q.; Zhou, S.; Zhu, H.; Zhou, G.; Niu, W.; Hua, J.; Jiang, Y.; Huang, X.; Ma, B.; Chen, Y. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Science Reports, 6(32271), 2016.

White, S.N.; Mousel, M.R.; Herrmann-Hoesing, L.M.; Reynolds, J.O.; Leymaster, K. A.; Neibergs, H.L.; Lewis, G.S.; Knowles, D.P. Genome-Wide Association Identifies Multiple Genomic Regions Associated with Susceptibility to and Control of Ovine Lentivirus, Plos One, 7(e47829), 2012.

Williams, S.H.; Sahota, V.; Palmai-Pallag, T.; Tebbutt, S.J.; Walker, J.; Harris, A. Evaluation of gene targeting by homologous recombination in ovine somatic cells. Molecular Reproduction and Development, 66: 115-125, 2003.

Wilmut, I.; Schnieke, A.E.; Mcwhir, J.; Kind, A.J.; Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810-813, 1997.

Wilmut, I.; Beaujean, N.; De Sousa, P.A.; Dinnyes, A.; King, T.J.; Paterson, L.A.; Wells, D.N.; Young, L.E. Somatic cell nuclear transfer. Nature, 419: 583-586, 2002.

Wu, G.; Schӧler, H.R. Role of Oct4 in the early embryo development. Cell Regeneration, 3(e7): 2014.

Yeo, J.C.; Ng, H.H. The transcriptional regulation of pluripotency. Cell Research, 23: 20-32, 2013.

Young, R.A. Control of the embryonic stem cell state. Cell, 144: 940-954, 2011.

Zeineddine, D.; Hammoud, A.A.; Mortada, M.; Boeuf, H.; Am, J. The Oct4 protein: more than a magic stemness marker. Stem Cells, 3: 74- 82, 2014. Zwaka, T. P. Ronin and caspases in embryonic stem cells: a new perspective on regulation of the pluripotent state. Cold Spring Harbor Symposia on Quantitative Biology, 163: 163-169, 2008.

Downloads

Publicado

13-12-2017

Como Citar

Silva, P. G. C., Moura, M. T., Braga, V. A. Ático, Silva, J. C. F., Nascimento, P. S., Cantanhêde, L. F., Chaves, M. S., & Oliveira, M. A. L. (2017). Atividade dos genes relacionados à pluripotência em ovinos. Medicina Veterinária, 11(2), 127–136. https://doi.org/10.26605/medvet-n2-1745

Edição

Seção

Reprodução Animal