Principais genes implicados na aquisição de competência oocitária
DOI:
https://doi.org/10.26605/medvet-v13n2-3090Palavras-chave:
RNAm, oócitos, célula da granulosa, embrião, apoptose.Resumo
Apesar do bloqueio meiótico no estádio diplóteno da prófase I, os oócitos da maioria dos mamíferos domésticos mantêm a capacidade de transcrição gênica devido ao fato da cromatina apresentar áreas de descondensação. Com a retomada da meiose sob estímulo do hormônio luteinizante, no entanto, esta atividade transcricional é interrompida, sendo restabelecida somente com a ativação do genoma embrionário. Deste modo, todo o processo de maturação oocitária, fertilização e embriogênese inicial assim como a expansão das células do cumulus dependem da adequada transcrição e estoque de RNAs mensageiros ainda durante o bloqueio meiótico que, em momentos oportunos e sob sinais específicos, serão recrutados para tradução e síntese proteica. Neste contexto de controle gênico, alguns transcritos se destacam por sua importância nos eventos que regem a aquisição de competência oocitária e o embriogênese inicial como o MATER, ZAR1, GDF9, BMP15, BAX e BCL2, expressos nos oócitos, além do PTGS2, PTX3, HSA2, TNFAIP6 e GREMLIN, expressos nas células do cumulus. Sendo assim, dada a relevância do tema, esta revisão tem como intuito explorar a interação oócito-cumulus e compilar o conhecimento referente à função e perfil de expressão dos principais transcritos maternos considerados imprescindíveis para o adequado desenvolvimento oocitário e embrionário.Downloads
Referências
Adona, P.R.; Bem, T.H.C.; Mesquita, L.G.; Rochetti, R.C.; Leal, C.L.V. Embryonic development and gene expression in oocytes cultured in vitro in supplemented prematuration and maturation media. Reproduction in Domestic Animals, 46: e31-8, 2011.
Akison, L.K.; Alvino, E.R.; Dunning, K.R.; Robkerand, R.L.; Russell, D.L.Transient invasive migration in mouse cumulus oocyte complexes induced at ovulation by luteinizing hormone. Biology of Reproduction, 86(4): 125,1-8, 2012.
Assidi, M.; Richard, F.J.; Sirard, M.A. FSH in vitro versus LH in vivo: similar genomic effects on the cumulus. Journal of Ovarian Research, 25;6(1): 68, 2013.
Bebbere, D.; Bogliolo, L.; Ariu, F.; Fois, S.; Leoni, G.G.; Tore, S.; Succu, S.; Berlinguer, F.; Naitana, S.; Ledda, S. Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos. Reproduction, Fertility and Development, 20: 908-915, 2008.
Budna, J.; Rybska, M.; Ciesiółka, S.; Bryja, A.; Borys, S.; Kranc, W.; WojtanowiczMarkiewicz, K.; Jeseta, M.; Sumelka, E.; Bukowska, D.; Antosik, P.; Brüssow, K.P.; Bruska, M.; Nowicki, M.; Zabel, M.; Kempisty. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach. Reproductive Biology and Endocrinology, 2: 15-43, 2017.
Cho, T.; Sakai, S.; Nagata, M.; Aoki, F. Involvement of chromatin structure in the regulation of mouse zygotic gene activation. Animal Science Journal, 73: 113-122, 2002.
Dhali, A.; Javvaji, P.K.; Kolte, A.P.; Francis, J.R.; Roy, S.C.; Sejian, V. Temporal expression of cumulus cell marker genes during in vitro maturation and oocyte developmental competence. Journal of Assisted Reproduction and Genetics, 34(11): 14931500, 2017.
Filali, M.; Frydman, N.; Belot, M.P.; Hesters, L.; Gaudin, F.; Tachdjian, G.; Emilie, D.; Frydman, R.; Machelon, V. Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reproductive Biomedicine Online, 19(4): 71–84, 2009.
Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease.Cell. 147(4): 742-758, 2011. Gilchrist, R.B.; Richani, D. Somatic guidance for the oocyte. Developmental Cell, 27(6): 603605, 2013. Gilchrist, R.B; Lane, M.; Thompson, J.G. Oocytesecreted factors: regulators of cumulus cell function and oocyte quality. Human Reproduction Update, 14(2): 159-177, 2008.
Gode, F.; Gulekli, B.; Dogan, E.; Korhanm P.; Dogan, S.; Bige, O.; Cimrin, D.; Atabey, N. Influence of follicular fluid GDF9 and BMP15 on embryo quality. Fertility and Sterility, 95(7): 2274-2278, 2011.
Greenfeld, C.R.; Pepling, M.E.; Babus, J.K.; Furth, P.A.; Flaws, J.A. BAX regulates follicular endowment in mice. Reproduction,133: 865876, 2007. Grivicich, I.; Regner, A.; Rocha, A.B. Apoptosis: Programmed Cell Death. Revista Brasileira de Cancerologia, 53(3): 335-343, 2007.
Hamatani, T.; Carter, M.G.; Sharov, A.A. Ko, M.S.H. Dynamics of global gene expression changes during mouse preimplantation
development. Developmental Cell, 6: 117131, 2004.
Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovisaries). Biology of Reproduction,70(4): 900-909, 2004.
Haouzi, D.; Hamamah, S. Pertinence of apoptosis markers for the improvement of in vitro fertilization (IVF). Current Medicinal Chemistry, 16(15): 1905-1916, 2009.
Hussein, M.R. Apoptosis in the ovary: molecular mechanisms. Human Reproduction Update, 11: 162-177, 2005.
Jukam, D.; Shariati, S.A.M.; Skotheim, M. Zygotic genome activation in vertebrates. Developmental Cell, 42(4): 316-332, 2017.
Kyassari, O.R.; Valojerdi, M.R.; Farrokin, A.; Ebrahimi, B. Expression of maturation genes and their receptors during in vitro maturation of sheep COCs in the presence and absence of somatic cells of cumulus origin. Theriogenology, 77(1): 12-20, 2012.
Krysko, D.V.; Diez-Fraile, A.; Criel, G.; Svistunov, A.A.; Vandenabeele, P.; D’Herde, K. Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis.13: 1065-1087, 2008.
Lee, M.T.; Bonneau, A.R.; Giraldez, A.J. Zygotic genome activation during the maternal-tozygotic transition. Annual Review of Cell and Developmental Biology, 30: 581-513, 2014.
Levoli, E.; Lindstedt, R.; Inforzato, A.; Camaioni, A.; Palone, F.; Day, A.J.; Mantovani, A.; Salvatori, G.; Salustri, A. Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly. Matriz Biology, 30 (1-5): 330-337, 2011.
Li, L.; Zheng, P.; Dean, J. Maternal control of early mouse development. Development, 137: 859870. 2010.
Lin, Z.L.; Li, Y.H.; Xu, Y.N.; Wang, Q.L.; Namgoong, S.; Cui, X.S.; Kim, N.H. Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reproduction in Domestic Animals, 49(2): 219-227, 2014.
Liu, H.C.; He, Z.Y.; Mele, C.A.; Veeck, L.L.; Davis, O.; Rosenwaks, Z. Expression of apoptosis-related genes in human oocytes and embryos. Journal of Assisted Reproduction and Genetics. 17(9): 521-533, 2000.
Lu, Y.Q.; He, X.C.; Zheng, P. Decrease in expression of maternal effect gene Mater is associated with maternal ageing in mice. Molecular Human Reproduction, 22(4): 252-260, 2016.
Marei, W.F.; Abayasekara, D.R.E.; Wathes, D.C.; Fouladi-Nashta, A.A. Role of PTGS2generated PGE2 during gonadotrophininduced bovine oocyte maturation and cumulus cell expansion. Reproductive Biomed Online, 28(3): 388-400, 2014.
Morita, Y.; Perez. G.; Maravei, D.V.; Tilly, K.I.; Tilly, J.L. Targeted expression of bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapyinduced oocyte apoptosis in vitro. Molecular Endocrinology, 13: 841-850, 1999.
Nath, A.; Sharma, V.; Dubey, P.K.; Pratheesh, M.D.; Gade, N.E.; Saikumar, G. Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalusbubalis) oocyte. In Vitro Cellular & Developmental Biology Animal, 49: 34-41, 2013.
Norris, R.P.; Freudzon, M.; Mehlmann, L.M.; Cowan, A.E.; Simon, A.M.; Paul, D.L., Lampe, P.D.; Jaffe, L.A. Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development, 135: 3229-3238, 2008.
Nuttinck, F.; Gall, L.; Ruffini, S.; Laffont, L.; Clement, L.; Reinaud, P.; Adenor, P.; Grimard, B.; Charpigny, G.; Marquant-le Guienne, B. PTGS2-Related PGE2 affects oocyte MAPK phosphorylation and meiosis progression in cattle: late effects on early embryonic development. Biology of Reproduction, 84: 1248-1257, 2011.
Ochsner, S.A.; Day, A.J.; Rugg, M.S.; Breyer, M.R.; Gomer, R.H.; Richards, J.S. Disrupted function of tumor necrosis factor alfa - stimulated gene 6 blocks cumulus cell-oocyte complex expansion. Endocrinology, 144(10): 4376-4384, 2003.
Pangas, S.A.; Jorgez, C.J.; Matzuk, M.M. Growth differentiation factor nine regulates expression of the bone morphogenic protein antagonist, gremlin. Journal of Biological Chemistry, 279: 32281-32286, 2004.
Pennetier, S.; Uzbekova, S.; Perreau, C.; Papillier, P.; Mermillod, P.; Dalbiès-Tran, R. Spatiotemporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biology of Reproduction, 71(4): 1359-1366, 2004.
Pereira, M.M.; Costa, F.Q.; Oliveira, A.P.; Serapião, P.R., Machado, M.A.; Viana, J.H.M.; Camargo, L.S.A. Quantificação de transcritos maternos em oócitos bovinos submetidos a diferentes condições de maturação. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62(6): 1394-1400, 2010. Procházka, R.; Petlach, M.; Nagyová, E.; Nemcová, L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Reproduction, 141(4): 425-435, 2011. Ratts, V.S.; Flaws, J.A.; Kolp, R.; Sorenson, C.M.; Tilly, J,L. Ablation of bcl-2 gene expression decreases the number of oocytes and primordial follicles established in the postnatal female mouse gonad. Endocrinology,136:3665-3668, 1995.
Richani, D.; Ritter, L.J.; Thompson, J.G.; Gilchrist, R.B. Mode of oocyte maturation affects EGFlike peptide function and oocyte competence. Molecular Human Reproduction, 19(8): 500-509, 2013.
Russel, D.L.; Salustri, A. Extracellular matrix of the cumulus-oocyte complex. Seminars in Reproductive Medicine, 24: 217-227, 2006.
Salustri, A.; Garlanda, C.; Hirsch, E.; Acetis, M.D.; Maccagno, A.; Bottazzi, B.; Doni, A.; Bastone, A.; Mantovani, G.; Beck Peccoz, P.; Salvatori, G.; Mahoney, D.J.; Day, A.J.; Siracusa,G.; Romani, L.; Mantovani, A. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development, 131: 15771586, 2004. Sarraj, M.A.; Drummond, A.E. Mammalian fetal ovarian development: consequences for health and disease. Reproduction, 143: 151-163, 2012.
Schoenfelder, M.; Einspanier, R. Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biology of Reproduction, 69: 269-277, 2003.
Schultz, R.M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update, 8(4): 323-331, 2002.
Shruthi, B.S.; Vinodhkumar, P.; Selvamani. Proteomics: a new perspective for cancer. Advanced Biomedical Research, 5 (67): 117, 2016.
Sirard, M.A. Factors affecting oocyte and embryo transcriptomes. Reproduction in Domestic Animals, 47(4): 148-155, 2012.
Su, Y.Q.; Sugiura, K.; Li, Q.; Wigglesworth, K.; Matzuk, M.M.; Eppig, J.J. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Molecular Endocrinology, 24(6): 1230-1239, 2010.
Sugimura, S.; Ritter, L.J.; Rose, R.D.; Thompson, J.G.; Smitz, J.; Mottershead, D.G., Gilchrist, R.B. Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Developmental Biology, 403(2): 139-149, 2015.
Sugiura, K.; Su, Y.Q.; Li, Q.; Wigglesworth, K.; Matzuk, M.M.; Eppig, J,J. Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Molecular Endocrinology, 24: 2303-2314, 2010.
Sun, R.Z.; Lei, L.; Cheng, L.; Jin, Z.F.; Zu, S.J.; Shan, Z.Y.; Wang, Z.D.; Liu, Z.H. Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. Journal of Molecular Histology, 41: 325-332, 2010. Takahashi, T.; Morrow, J.D.; Wang, H.; Dey, S.K. Cyclooxygenase-2-derived prostaglandin E2 directs oocyte maturation by differentially influencing multiple signaling pathways. Journal of Biological Chemistry, 281: 37117-37129, 2006.
Tanghe, S.; Soom, A.V.; Nauwynckm H.; Coryn, M.; De Kruif, A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Molecular Reproduction and Development, 61: 414424. 2002.
Tong, Z.B.; Gold, L.; Pfeifer, K.E.; Dorward, H.; Lee, E.; Bondy, C.A.; Dean, J.; Nelson, L.M. Mater, a maternal effect gene required for early embryonic development in mice. Nature Genetics, 26(3): 267-268, 2000.
Uzbekova, S.; Roy-Sabau, M.; Dalbiès-Tran, R.; Perreau, C.; Papillier, P.; Mompart, F.; Thelie, A.; Pennetier, S.; Cognie, J.; Cadoret, V.; Royere, D.; Monget, P.; Mermillod, P. Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells. Reproductive Biology and Endocrinology, 4(12): 1-14, 2006.
Wei, L.N.; Liang, X.Y.; Fang, C.; Zhang, M.F. Abnormal expression of growth differentiation factor 9 and bone morphogenetic protein 15 in stimulated oocytes duri0ng maturation from women with polycystic ovary syndrome. Fertility and Sterility, 96: 464-468, 2011.
Wu, X.; Viveiros, M.M.; Eppig, J.J.; Ba, Y.; Fitzpatrick, S.L.; Matzuk, M.M. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nature Genetics, 33: 187-191, 2003.
Yoshino, O.; McMahon, H.E.; Sharma, S.; Shimasaki, S. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proceedings of the National Academy Sciences, 103(28): 10678-10683, 2006.
Zhang, K.; Smith, G.W. Maternal control or early embryogenesis in mammals. Reproduction, Fertility and Development, 27(6): 880-896, 2015.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
- A Revista de Medicina Veterinária permite que o autor retenha os direitos de publicação sem restrições, utilizando para tal a licença Creative Commons CC BY-NC-SA 4.0.
- De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- NãoComercial — Você não pode usar o material para fins comerciais.
- CompartilhaIgual — Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.