Ecotoxicity of Direct Red 09 dye using Eisenia fetida L. and Lactuca sativa L. as biological indicators

Authors

DOI:

https://doi.org/10.24221/jeap.9.3.2024.5910.196-204

Keywords:

Plant bioassays, Ecotoxicology, Aquatic pollution, Soil pollution

Abstract

The constantly evolving industrial sector has been causing increasing pollution in watercourses and soil. The production of dyes contributes to this problem, as approximately 15% of the substances used in the industry are directly discarded into the environment. Due to the limited information on the environmental impacts of dyes, this study was conducted with the aim of evaluating the toxic potential of Direct Red 09 dye on earthworms (Eisenia fetida) and on the germination and initial development of lettuce (Lactuca sativa). Four concentrations of the dye (1, 2, 4, and 8 mg mL-1) were evaluated, in addition to the control (distilled water). The toxicity tests followed the OECD 207 guidelines for E. fetida and ISO 18763 for L. sativa, both with adaptations. The results showed that in earthworms, exposure to the dye caused 20% mortality at a concentration of 8 mg mL-1, while lower concentrations caused morphological alterations such as loss of coloration and leakage of blood and coelomic fluid. In lettuce, the concentration of 8 mg mL-1 reduced the germination percentage by 73,16%, and concentrations of 4 and 8 mg mL-1 affected the germination speed index. The length of the shoot and root of the seedlings was affected by all evaluated dye concentrations, with the median effective concentration (EC50) for the root being 1,75 mg mL-1. It can be concluded that Direct Red 09 dye is toxic to the tested living organisms, highlighting the need for control in the disposal of this substance into the environment.

Downloads

Download data is not yet available.

References

Alves, P. R. L.; Bandeira, F. O.; Hennig, T. B. 2022. Ecological Role of Earthworms as Bioindicators of Soil Health. In: Vig, A. P.; Singh, J.; Suthar, S. [eds.]. Earthworm Engineering and Applications, 1 ed., Nova Science Publishers, Inc. pp. 51-64.

Ayushi C. 2020. Textile Dyes Market Size, Share & Growth. Disponível em: https://www.alliedmarketresearch.com/textile-dyes-market. Acesso em: 22. mar. 2023.

Bernardes, P. M.; Andrade-Vieira, L. F.; Aragão, F. B.; Ferreira, A.; da Silva Ferreira, M. F. 2015. Toxicity of difenoconazole and tebuconazole in Allium cepa. Water, Air, & Soil Pollution, 226, 1-11. https://doi.org/10.1007/s11270-015-2462-y

Domínguez-Rodríguez, V. I.; Adams, R. H.; Sánchez-Madrigal, F.; Pascual-Chablé, J. D. L. S.; Gómez-Cruz, R. 2020. Soil contact bioassay for rapid determination of acute toxicity with Eisenia foetida. Heliyon, 6, e03131. https://doi.org/10.1016/j.heliyon.2019.e03131

FISPQ – Ficha de Informação de Segurança de Produto Químico. Tingecor, 2020 Disponível em: https://www.guaranycorantes.com.br/FISPQ/fispqtingecor.pdf Acesso em: 22 jan. 2023.

Gopinathan, R.; Kanhere, J.; Banerjee, J. 2015. Effect of malachite green toxicity on non target soil organisms. Chemosphere, 120, 637-644. https://doi.org/10.1016/j.chemosphere.2014.09.043

Guari, E. B.; Almeida, E. J. R.; Martiarena, J. S.; Yamagami, N. S.; Corso, C. R. 2015. Azo Dye Acid Blue 29: biosorption and phytotoxicity test. Water, Air, & Soil Pollution, 226, 1-7. https://doi.org/10.1007/s11270-015-2611-3

Haq, I.; Raj, A. 2018. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere, 196, 58-68. https://doi.org/10.1016/j.chemosphere.2017.12.153

Iqbal, M.; Abbas, M.; Nisar, J.; Nazir, A.; Qamar, A. 2019. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review. Chemistry International, 5, 1, 1-80.

ISO 18763:2016. 2016. Soil quality – Determination of the toxic. Effects of pollutants on germination and early growth of higher plants. ISO (the International Organization for Standardization), pp. 1-22. Disponível em: https://www.iso.org/standard/63317.html. Acesso em: 22 jan. 2023.

Maguire, J. D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Mauro, M. O.; Pesarini, J. R.; Marin-Morales, M. A.; Monreal, M. T. F. D.; Monreal, A. C. D.; Mantovani, M. S.; Oliveira, R. J. 2014. Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture. Genetics and Molecular Research, 13, 4808-4819. http://dx.doi.org/10.4238/2014.February.14.14

OECD. 1984. Teste No. 207: Earthworm, Acute Toxicity Tests, Guideline for Testing of Chemicals, pp. 1-9. Disponível em: https://www.oecd-ilibrary.org/environment/test-no-207-earthworm-acute-toxicity-tests_9789264070042-en. Acesso em: 4 jan. 2023.

OECD. 2006. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Publishing, 1-21. https://doi.org/10.1787/9789264070066-en

Oliveira, G. A. R.; Leme, D. M.; Lapuente, J.; Brito, L. B.; Porredón, C.; Rodrigues, L.; ... Oliveira, D. P. 2018. A test battery for assessing the ecotoxic effects of textile dyes. Chemico-biological interactions, 291, 171-179. https://doi.org/10.1016/j.cbi.2018.06.026

Palmieri, M. J.; Andrade-Vieira, L. F.; Trento, M. V. C.; Eleutério, M. W.; Luber, J.; Davide, L. C.; Marcussi, S. 2016. Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water, Air, & Soil Pollution, 227, 1-10. https://doi.org/10.1007/s11270-016-2809-z

Pereira, P. C. G.; Reimao, R. V.; Pavesi, T.; Saggioro, E. M.; Moreira, J. C.; Correia, F. V. 2017. Lethal and sub-lethal evaluation of Indigo Carmine dye and byproducts after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms. Ecotoxicology and environmental safety, 143, 275-282. https://doi.org/10.1016/j.ecoenv.2017.05.043

Rank, J.; Nielsen, M. H. 1997. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 390, 121-127. https://doi.org/10.1016/S0165-1218(97)00008-6

Rodrigues, L. C. D. A.; Barbosa, S.; Pazin, M.; Maselli, B. D. S.; Beijo, L. A.; Kummrow, F. 2013. Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 1099-1108.

Schuijt, L. M.; Peng, F. J.; Van den Berg, S. J.; Dingemans, M. M.; Van den Brink, P. J. 2021. (Eco) toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: facts, challenges, and future. Science of the total environment, 795, 148776. https://doi.org/10.1016/j.scitotenv.2021.148776

Sharma, J.; Sharma, S.; Soni, V. 2021. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/j.rsma.2021.101802

Silva, Q. M.; Andrade-Vieria, L. F. 2024. Is pearl millet (Pennisetum glaucum) a good plant species for ecotoxicological tests? Environmental Science and Pollution Research, 31, 41953-41963. https://doi.org/10.1007/s11356-024-33947-x

Silva, L. M.; Silva, F. J. 2023. Toxic Effects Promoted by a Commercial Detergent on the Germination and Initial Development of Cucumber Seedlings (Cucumis sativus L.). Ecotoxicology and Environmental Contamination, 18, 2, 3-9. https://doi.org/10.5132/eec.2023.02.02

Silva, L. M.; Cimino, F. F.; Borgo, A. L.; Dutra, V. S. V; Oliveira, J. E. Z. 2023. Avaliação da toxicidade, citotoxicidade e genotoxicidade do infuso dos rizomas de Curcuma longa L. (Zingiberaceae). Rev Fitos, 17, 9-17. https://doi.org/10.32712/2446-4775.2022.1447

Turk, M. A.; Tawaha, M. 2002. Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Journal of Agronomy, 1, 28-30.

Vieira, L. F. A.; Silveira, G. L. 2018. Cyto (geno) toxic endpoints assessed via cell cycle bioassays in plant models. Cytotoxicity. London: IntechOpen, pp. 117-129.

Yadav, R.; Kumar, R.; Gupta, R. K.; Kaur, T.; Kour, A.; Kaur, S.; Rajput, A. 2023. Heavy metal toxicity in earthworms and its environmental implications: A review. Environmental Advances, 12, 100374. https://doi.org/10.1016/j.envadv.2023.100374

Zagatto, P. A.; Bertoletti, E. 2006. Ecotoxicologia aquática: princípios e aplicações. São Carlos: Rima Artes e Textos. 478p.

Published

2024-08-15

How to Cite

Silva, L. M. da, Dutra, V. de S. V. ., Borgo, A. L. ., Nascimento, C. M. S., & Oliveira, J. E. Z. de. (2024). Ecotoxicity of Direct Red 09 dye using Eisenia fetida L. and Lactuca sativa L. as biological indicators. Journal of Environmental Analysis and Progress, 9(3), 196–204. https://doi.org/10.24221/jeap.9.3.2024.5910.196-204