Português

Português

Authors

DOI:

https://doi.org/10.24221/jeap.9.4.2024.6260.377-387

Keywords:

Português

Abstract

The Brazilian semi-arid region features vegetation adapted to water deficit due to irregular rainfall patterns, high temperatures, and intense solar radiation. The lack of water in the soil is one of the main factors determining plant establishment, especially during the initial stages of their development. In this context, the aim was to assess morphological changes in yellow ipê tree (Handroanthus serratifolius) seedlings growing under water deficit conditions, using seeds collected from both preserved and anthropized areas. To achieve this, seeds from two different areas were collected and germinated to obtain seedlings. Subsequently, the seedlings were subjected to different water regimes based on field capacity (FC), with T100 = 100% FC, T75 = 75% FC, T50 = 50% FC, and T25 = 25% FC, to evaluate morphological changes. The results indicated that yellow ipê tree seedlings from both environments have the ability to adapt or adjust to water deficit conditions, with city seedlings capable of adopting more effective strategies against these stressful conditions, accelerating growth, and maintaining significant leaf production. The greatest plasticity was found in leaf production in both environments, with the most significant variation in height and the lowest plasticity in stem and leaf water content and diameter. Therefore, the ability of yellow trumpet trees to adapt to stressful conditions suggests that seeds retain memories of the characteristics of the "mother plant."

Downloads

Download data is not yet available.

References

Aguiar, B. A. de S. et al. 2020. The effect of reducing soil water availability on the growth and reproduction of a drought-tolerant herb. Acta Oecologica, 107, 103617. https://doi.org/10.1016/j.actao.2020.103617

Alves, E. D. L.; Vecchia, F. A. S. 2012. Influência de diferentes superfícies na temperatura e no fluxo de energia: um ensaio experimental. Ambiência, 8, (1), 101-111. https://doi.org/10.5777/ambiencia.2012.01.08

Araújo Neto, J. C.; Aguiar, I. B.; Ferreira, V. M. 2003. Efeito da temperatura e da luz na germinação de sementes de Acacia polyphylla DC. Brazilian Journal of Botany, 26, 249-256. https://doi.org/10.1590/S010084042003000200013

Boonman, C. C.; Van Langevelde, F.; Oliveras, I.; Couédon, J.; Luijken, N.; Martini, D.; Veenendaal, E. M. 2020. On the importance of root traits in seedlings of tropical tree species. New Phytologist, 227, 156-167. https://doi.org/10.1111/nph.16370

Cabral, E. L.; Barbosa, D. C. A.; Simabukuro, E. A. 2004. Crescimento de plantas jovens de Tabebuia aurea (Manso) Benth. & Hook. f. ex S. Moore submetidas a estresse hídrico. Acta botanica brasílica, 18, 241-251. https://doi.org/10.1590/S010233062004000200004

Dantas, S. G. 2014. Crescimento inicial e morfologia foliar em plantas de Enterolobium contortisiliquum (Vell.) Morong. e Erythrina velutina Mart. ex Benth, sob estresse hídrico. Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte. Natal, Rio Grande do Norte, Brasil. 49p.

Delgado, R. C. 2007. Avaliação de modelos físico-matemáticos para estimativa de umidade relativa do ar e déficit de pressão de vapor a partir de dados de temperatura do ar. Dissertação de Mestrado, Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brasil. 107p.

Doležal, J. et al. 2024. Contrasting biomass allocations explain adaptations to cold and drought in the world’s highest-growing angiosperms. Annals of Botany, 134, 401-414. https://doi.org/10.1093/aob/mcae028

Duncan, W. G.; Hesketh, J. D. 1968. Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures. Crop Science, 8, (6), 670-674. https://doi.org/10.2135/cropsci1968.0011183X000800060009x

Eziz, A. et al. 2017. Drought effect on plant biomass allocation: A meta?analysis. 2017. Ecology and evolution, 7, (24), 11002-11010. https://doi.org/10.1002/ece3.3630

Falcão, H. M. et al. 2022. Variation in the water use and gas exchange of two Brazilian tropical dry forest phytophysiognomies in response to successional stage. Journal of Arid Environments, 206, 104831. https://doi.org/10.1016/j.jaridenv.2022.104831

Farkas, D.; Dobránszki, J. 2014. Vegetal memory through the lens of transcriptomic changes–recent progress and future practical prospects for exploiting plant transcriptional memory. Plant Signaling & Behavior, 19, 2383515. https://doi.org/10.1080/15592324.2024.2383515

Forsman, A. 2015. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity, 115, (4), 276-284. https://doi.org/10.1038/hdy.2014.92

Garcia, D. C.; Souza, A. C.; Barros, A.; Peske, S. T.; Menezes, N. L. A. 2004. A secagem de sementes. Revista Ciência Rural, 34, (2), 603-608. https://doi.org/10.1590/S010384782004000200045

Gonçalves, L. H. D. N.; Santos, H. O. D.; Von Pinho, E. V. D. R.; Andrade, T. D.; Von Pinho, I. V.; Pereira, R. W. 2015. Physiological quality and expression of genes in seeds of Handroanthus serratifolius subjected to drying. Journal of Seed Science, 37, 102-110. https://doi.org/10.1590/23171545v37n2144303

Gratani, L. 2014. Plant phenotypic plasticity in response to environmental factors. Advances in botany, 2014, 208747. https://doi.org/10.1155/2014/208747

Hanson, A. D.; Hitz, W. D. 1982. Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Physiology, 33, (1), 163-203. https://doi.org/10.1146/annurev.pp.33.060182.001115

Jacomine, P. K. T.; Cavalcanti, A. C.; Pessoa, S. C. P.; Burgos, N.; Mélo Filho, H. F. R.; Lopes, O. F. 1986. Levantamento exploratório de solos do estado do Piauí. EMBRAPA-SNLCS, boletim de pesquisa, série recursos de solos, 36, (18), 782p.

Kroon, H. et al. 2005. A modular concept of phenotypic plasticity in plants. New phytologist, 166, 73-82. https://doi.org/10.1111/j.14698137.2004.01310.x

Lopes, J. C. R. 2007. Floresta Nacional: implantação, gestão e estudo de caso – FLONA de Palmares. Teresina. Dissertação de Mestrado, Universidade Federal do Piauí. Teresina, Piauí, Brasil. 96p.

Medeiros, R. L. S. et al. 2023. Abiotic stress on seed germination and plant growth of Zeyheria tuberculosa. Journal of Forestry Research, 34, 1511-1522. https://doi.org/10.1007/s11676-023-01608-3

Nascimento, H. H. C. do et al. 2011. Análise do crescimento de mudas de jatobá (Hymenaea courbaril L.) em diferentes níveis de água no solo. Revista Árvore, 35, 617-626. https://doi.org/10.1590/S010067622011000400005

Nicotra, A. B. et al. 2010. Plant phenotypic plasticity in a changing climate. Trends in plant science, 15, (12), 684-692. https://doi.org/10.1016/j.tplants.2010.09.008

Padilla, F. M. et al. 2009. Variability in amount and frequency of water supply affects roots but not growth of arid shrubs. Plant Ecology, 204, 261-270. https://doi.org/10.1007/s11258-009-9589-0

Peak, D.; Mott, K. A. 2011. A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant, Cell & Environment, 34, 162-178. https://doi.org/10.1111/j.13653040.2010.02234.x

Radford, P. J. 1967. Growth analysis formulae?their use and abuse 1. Crop Science, 7, (3), 171-175. https://doi.org/10.2135/cropsci1967.0011183X000700030001x

Santos, M. et al. 2021. Whole plant water status and non?structural carbohydrates under progressive drought in a Caatinga deciduous woody species. Trees, 35, 1257-1266. https://doi.org/10.1007/s00468-021-02113-y

Santos, M. G. et al. 2014. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology, 26, (1), 83-99. https://doi.org/10.1007/s40626-014-0008-0

Soares, M. G. 2012. Plasticidade fenotípica de plantas jovens de Handroanthus chrysotrichus (Mart. ex DC.) Mattos (Bignoniaceae) em resposta a radiação solar. Dissertação de Mestrado, Universidade Federal do Espírito Santo. Vitória, Espírito Santo, Brasil. 91p.

Sotillo, A. et al. 2024. Plant responses to urban gradients: Extinction, plasticity, adaptation. Journal of Ecology, 00, 1-15. https://doi.org/10.1111/1365-2745.14427

Souza, V. C. D.; Bruno, R. D. L. A.; Andrade, L. A. D. 2005. Vigor de sementes armazenadas de ipê-amarelo Tabebuia serratifolia (Vahl.) Nich. Revista árvore, 29, 833-841. https://doi.org/10.1590/S010067622005000600001

Taiz, L.; Zeiger, E.; Møller, I. M.; Murphy, A. 2017. Fisiologia e Desenvolvimento Vegetal. Artmed, 6ª edição. 888p.

Trovão, D. M. B. et al. 2007. Variações sazonais de aspectos fisiológicos de espécies da Caatinga. Revista Brasileira de Engenharia Agrícola e Ambiental, 11, (3), 307-311. https://doi.org/10.1590/S141543662007000300010

Turner, N. C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, (1-3), 339-366. https://doi.org/10.1007/BF02180062

Valladares, F. et al. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, (6), 1103-1116. https://doi.org/10.1111/j.13652745.2006.01176.x

Ziska, L. H.; Gebhard, D. E.; Frenz, D. A.; Faulkner, S.; Singer, B. D.; Straka, J. G. 2003. Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol, 111, (2), 290-295. https://doi.org/10.1067/mai.2003.53

Published

2024-12-24

How to Cite

Português, P., Português, P., Português, P., Português, P., & Português, P. (2024). Português: Português. Journal of Environmental Analysis and Progress, 9(4), 377–387. https://doi.org/10.24221/jeap.9.4.2024.6260.377-387