Statistical evaluation of mathematical models for Salmonella typhimurium growth

Authors

  • Neide K.S. Shinohara Professor do Departamento de Tecnologia Rural da Universidade Federal Rural de Pernambuco, Recife, Pernambuco http://orcid.org/0000-0003-2773-1674
  • Fernanda Freitas
  • Edleide Pires
  • Samara Andrade
  • José Lima Filho
  • Paulo Sousa

Abstract

Food illness is a serious health threat and has significant economic consequences for people in both the developing and developed world. Salmonella genus is one of the most common pathogens and a major cause of foodborne illness in humans worldwide. Nowadays, the application of mathematical models and functions to describe the microorganism growth kinetics provides a new behavioral vision of the interaction between microorganisms and the environment. Lately the studies on the subject have been gathering interest in the elaboration and application of mathematical modeling and equations over the last years to be used in biotechnological and industrial process, therefore being a most useful tool, with the intent of reducing time and expenses associated with the conventional tests. The purpose of the present study was to compare the Baranyi and Roberts (1994) model with quadratic function generated from data experimentally obtained of the Salmonella typhimurium growth in vitro. It was observed that the quadratic function had a better fitting to describe the kinetics growth of Salmonella typhimurium, this function being a low cost, efficient and easily applied tool.

Downloads

Download data is not yet available.

References

BARANYI, J.; ROBERTS, T.A.; McCLURE, P. A nonautonomous

differential equation to model bacterial

growth. Food Microbiology, v. 10, n. 1, p. 43-59, 1993.

BARANYI, J.; ROBERTS, T.A. A dynamic approach to

predicting bacterial growth in food. International

Journal of Food Microbiology, v. 23, n. 3-4, p. 277-294,

BARANYI, J.; ROBERTS, T.A. Mathematics of

predictive food microbiology. International Journal of

Food Microbiology, v. 26, n. 2, p. 199-218, 1995.

BASTI, A. A.; RAZAVILAR, V. Growth response and

modeling of the effects of selected factors on the timeto-detection

and probability of growth initiation of

Salmonella typhimurium. Food Microbiology, v. 21, n.

, p. 431-438, 2004.

CDC. Centers for Disease Control and Prevention.

Pathogens causing US foodborne illnesses,

hospitalizations, and deaths, 2000–2008. 2010.

Disponível em: <https://www.cdc.gov/salmonella/>.

Acesso em: 23 set 2017.

COGAN, T.A. Growth of Salmonella enteritidis in

artificially contaminated eggs: the effects of inoculum

size and suspending media. International Journal of

Food Microbiology, v. 70, n. 1-2, p. 131-141, 2001.

FDA. Food and Drug Administration, 2010. Food

Code. Available at Disponível em:

http://www.cfsan.fda.gov/~dms/fc01-pre.html>. Acesso

em: 15 set 2017.

GUPTA, R.; SHARMA, P.; VYAS, V.V. Effect of growth

environment on the stability of a recombinant shuttle

plasmid, pCPPS-31, in Escherichia coli. Journal of

Biotechnology, v.41, n. 1, p. 29-37, 1995.

LENHARD, J.; CARRIER, M. Mathematics as a Tool:

Tracing New Roles of Mathematics in the Sciences.

Boston: Springer, 154p, 2017.

LOPEZ, S.; PRIETO, M.; DIJKSTRA, J.; DHANOA,

M.S.; FRANCE, J. Statistical evaluation of

mathematical models for microbial growth.

International Journal of Food Microbiology,v. 96, n.3,

p. 289-300, 2004.

McDONALD, K; SUN, D. Predictive food microbiology

for the meat industry: a review. International Journal

of Food Microbiology, v. 52, n. 1-2, p. 1-27, 1999.

MEAD, P. S.; SLUTSKER, L.; DIETZ, V.; MACRAIG,

L. F.; BRESEE, J. S.; SHAPIRO, C.; GRIFFIN, P. M.;

TAUXE, R. V. Food related illness and death in the

United States. Emergency Infection Disease, v. 5, n. 5,

-625, 1999.

PERNI, S.; ANDREW, P. W.; SHAMA, G. Estimating

the maximum growth rate from

microbial growth curves: definition is everything. Food

Microbiology, v.22, n. 6, 491- 495, 2005.

ROBINSON, T. P.; ABOABA, O. O.; KALOTI, A.,

OCIO, M., BARANYI, J.; MACKEY, B.M. The effect of

inoculum size on the lag phase of Listeria

monocytogenes. International Journal of Food

Microbiology, v. 70, n. 1-2, p. 163-173, 2001.

SCHLEGEL, H. G. General Microbiology. (1st ed.)

Cambridge, UK: University Press, 154p, 1997.

SILVA, S. M.; SILVA, E. M.; SILVA, E. Matemática

Básica para Cursos Superiores. (1st ed.) Atlas: São

Paulo, 232p, 2002.

TORTORA, G. J.; FUNKE, B. R.; CASE, C. L.

Microbiologia. Porto Alegre: Artmed, 964p, 2017.

TRABULSI, L. R.; ALTERTUM, F. Microbiologia. Rio

de Janeiro: Atheneu, 2015, 912p.

VAM IMPE, J. F.; POSCHET, F., GEERAERD, A. H.,

VEREECKEN, K. M. Towards a novel class of

predictive microbial growth models. International

Journal of Food Microbiology, v. 100, n. 1-3, p. 97-105,

Vieira, S. Bioestatística: Tópicos Avançados. Rio de

Janeiro: Elsevier, 216p, 2004

Published

2017-12-22

How to Cite

Shinohara, N. K., Freitas, F., Pires, E., Andrade, S., Lima Filho, J., & Sousa, P. (2017). Statistical evaluation of mathematical models for Salmonella typhimurium growth. Geama Journal - Environmental Sciences, 4(1), 33–38. Retrieved from https://journals.ufrpe.br/index.php/geama/article/view/1757