Argila impregnada como catalisador heterogêneo para produção de biodiesel
Palavras-chave:
montemorilonita, catalisadores, sulfatos, flúor, transesterificaçãoResumo
Investigações anteriores sugerem que a aplicação de catalisadores de argila funcionalizados apresenta eficiência catalítica semelhante aos métodos convencionais de produção de biodiesel. Entretanto, pouca atenção tem sido dada aos estudos sobre a aplicação de outros compostos contendo K e Na na produção de catalisadores com argilas. Assim, o presente trabalho investigou a produção e aplicação na transesterificação etílica e metílica de bentonita funcionalizada por K2CO3, KCl, K2SO4, NaF, Na2SiF6 e KHSO4. As reações de transesterificação do óleo de algodão foram realizadas a 70°C por 2 h sob agitação e refluxo utilizando metanol ou etanol. Bentonita e catalisadores foram caracterizados por indicadores de Hammett e difração de raios X. Os resultados sugerem que os compostos químicos de K e Na interagem fortemente com a argila. Os catalisadores ácidos proporcionam uma baixa conversão do óleo de semente de algodão e os catalisadores alcalinos apresentam alta atividade catalítica na transesterificação metílica e alguma conversão na reação com etanol em temperaturas moderadas.Downloads
Referências
ALVES, H. J. et al. Treatment of clay with KF: New solid catalyst for biodiesel production. Applied Clay Science, v. 91–92, p. 98–104, 2014. DOI: 10.1016/j.clay.2014.02.004.
ASTM D6584. Test method for determination of free and total glycerin in B-100 biodiesel methyl esters by gas chromatography. [S. l.]: ASTM International, 2019.
BALLOTIN, F. C. et al. Natural Mg silicates with different structures and morphologies: Reaction with K to produce K2MgSiO4 catalyst for biodiesel production. International Journal of Minerals, Metallurgy and Materials, v. 27, n. 1, p. 46–54, 2020. DOI: 10.1007/s12613-019-1891-9.
BOZ, N.; DEGIRMENBASI, N.; KALYON, D. M. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-?-Al2O3 as catalyst. Applied Catalysis B: Environmental, v. 89, n. 3–4, p. 590–596, 2009. DOI: 10.1016/j.apcatb.2009.01.026.
COSTA, J. M. D.; LIMA, L. R. P. D. A. Bentonite functioned by potassium compounds as a solid catalyst for biodiesel production. REM - International Engineering Journal, v. 76, n. 3, p. 265–272, 2023. DOI: 10.1590/0370-44672022760011.
DA COSTA, J. M.; DE ANDRADE LIMA, L. R. P. Transesterification of cotton oil with ethanol for biodiesel using a KF/bentonite solid catalyst. Fuel, v. 293, p. 120446, 2021. DOI: 10.1016/j.fuel.2021.120446.
DI SERIO, M. et al. Heterogeneous Catalysts for Biodiesel Production. Energy & Fuels, v. 22, n. 1, p. 207–217, 2008. DOI: 10.1021/ef700250g.
DU, J. et al. Adsorption of fluoride on clay minerals and their mechanisms using X-ray photoelectron spectroscopy. Frontiers of Environmental Science & Engineering in China, v. 5, n. 2, p. 212–226, 2011. DOI: 10.1007/s11783-010-0255-5.
ESSAMLALI, Y. et al. Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, v. 149, p. 355–367, 2017. DOI: 10.1016/j.enconman.2017.07.028.
FATIMAH, I.; RUBIYANTO, D.; NUGRAHA, J. Preparation, characterization, and modelling activity of potassium flouride modified hydrotalcite for microwave assisted biodiesel conversion. Sustainable Chemistry and Pharmacy, v. 8, p. 63–70, 2018. DOI: 10.1016/j.scp.2018.02.004.
HELWANI, Z. et al. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, v. 363, n. 1–2, p. 1–10, 2009. DOI: 10.1016/j.apcata.2009.05.021.
ISHAK, S.; KAMARI, A. A review of optimum conditions of transesterification process for biodiesel production from various feedstocks. International Journal of Environmental Science and Technology, v. 16, n. 5, p. 2481–2502, 2019. DOI: 10.1007/s13762-019-02279-6.
ISLAM, A. et al. Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric ?-Al2O3. Renewable Energy, v. 59, p. 23–29, 2013. DOI: 10.1016/j.renene.2013.01.051.
KABASHIMA, H. et al. Activity for base-catalyzed reactions and characterization of alumina-supported KF catalysts. Applied Catalysis A: General, v. 194–195, p. 227–240, 2000. DOI: 10.1016/S0926-860X(99)00370-1.
KAU, P. M. H.; SMITH, D. W.; BINNING, P. Experimental sorption of fluoride by kaolinite and bentonite. Geoderma, v. 84, n. 1–3, p. 89–108, 1998. DOI: 10.1016/S0016-7061(97)00122-5.
KHALIFA, A. Z. et al. Advances in alkali-activation of clay minerals. Cement and Concrete Research, v. 132, p. 106050, 2020. DOI: 10.1016/j.cemconres.2020.106050.
KLOPROGGE, J. T.; KOMARNENI, S.; AMONETTE, J. E. Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, v. 47, n. 5, p. 529–554, 1999. DOI: 10.1346/CCMN.1999.0470501.
KUCEK, K. T. et al. Ethanolysis of Refined Soybean Oil Assisted by Sodium and Potassium Hydroxides. Journal of the American Oil Chemists’ Society, v. 84, n. 4, p. 385–392, 2007. DOI: 10.1007/s11746-007-1048-2.
LIU, D. et al. Influence of heating on the solid acidity of montmorillonite: A combined study by DRIFT and Hammett indicators. Applied Clay Science, v. 52, n. 4, p. 358–363, 2011. DOI: 10.1016/j.clay.2011.03.016.
LIU, Y. et al. Transesterification of triacetin using solid Brønsted bases. Journal of Catalysis, v. 246, n. 2, p. 428–433, 2007. DOI: 10.1016/j.jcat.2007.01.006.
LOTERO, E. et al. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, v. 44, n. 14, p. 5353–5363, 2005. DOI: 10.1021/ie049157g.
NAIK, B. D.; MEIVELU, U. Experimental studies on sodium methoxide supported bentonite catalyst for biodiesel preparation from waste sunflower oil. Environmental Progress & Sustainable Energy, v. 39, n. 4, 2020. DOI: 10.1002/ep.13390.
NIR, S. et al. Specific Adsorption of Lithium, Sodium, Potassium, and Strontium to Montmorillonite: Observations and Predictions. Soil Science Society of America Journal, v. 50, n. 1, p. 40–45, 1986. DOI: 10.2136/sssaj1986.03615995005000010008x.
RANUCCI, C. R. et al. Preparation, characterization and stability of KF/Si-MCM-41 basic catalysts for application in soybean oil transesterification with methanol. Journal of Environmental Chemical Engineering, v. 3, n. 2, p. 703–707, 2015. DOI: 10.1016/j.jece.2015.02.023.
SANGALETTI-GERHARD, N. et al. Alkaline-catalyzed ethanolysis of soybean oil ethanolic miscella. Fuel, v. 116, p. 415–420, 2014. DOI: 10.1016/j.fuel.2013.08.033.
SHAN, R. et al. Transesterification of palm oil to fatty acids methyl ester using K2CO3 /palygorskite catalyst. Energy Conversion and Management, v. 116, p. 142–149, 2016. DOI: 10.1016/j.enconman.2016.02.084.
SILVA, M. J. da; CARDOSO, A. L. Heterogeneous tin catalysts applied to the esterification and transesterification reactions. Journal of Catalysts, v. 2013, 510509, p. 1–11, 2013. DOI: 10.1155/2013/510509.
SPOSITO, G.; PROST, R. Structure of water adsorbed on smectites. Chemical Reviews, v. 82, n. 6, p. 553–573, 1982. DOI: 10.1021/cr00052a001.
SRIDHARAN, A.; RAO, S. M. Mechanism of Sulfate Adsorption by Kaolinite. Clays and Clay Minerals, v. 32, n. 5, p. 414–418, 1984. DOI: 10.1346/CCMN.1984.0320510.
SUN, J. et al. Basicity–FAME yield correlations in metal cation modified MgAl mixed oxides for biodiesel synthesis. Catalysis Communications, v. 52, p. 1–4, 2014. DOI: 10.1016/j.catcom.2014.03.023.
TYAGI, O. S. et al. Production, characterization and development of standards for biodiesel — A review. MAPAN, v. 25, n. 3, p. 197–218, 2010. DOI: 10.1007/s12647-010-0018-6.
YAZICI, D. T.; BILGIÇ, C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR?pyridine adsorption methods. Surface and Interface Analysis, v. 42, n. 6–7, p. 959–962, 2010. DOI: 10.1002/sia.3474.
YE, B. et al. Biodiesel production from soybean oil using heterogeneous solid base catalyst: Biodiesel production from soybean oil. Journal of Chemical Technology & Biotechnology, v. 89, n. 7, p. 988–997, 2014. DOI: 10.1002/jctb.4190.
YU, S. Y.; HAN, X. Y.; MI, J. Biodiesel production from waste cooking oil using KCl/CaO as catalyst. Advanced Materials Research, v. 1044–1045, p. 259–262, 2014. DOI: 10.4028/www.scientific.net/AMR.1044-1045.259.
ZEMPULSKI, D. A. et al. Continuous Transesterification Reaction of Residual Frying Oil with Pressurized Ethanol Using KF/Clay as Catalyst. European Journal of Lipid Science and Technology, v. 122, n. 5, p. 1900315, 2020. DOI:10.1002/ejlt.201900315
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Geama
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As Políticas Culturais em Revista aplica a Licença Creative Commons Atribuição-Não Comercial 4.0 Internacional (CC BY-NC-SA 4.0) para os trabalhos que publica. Esta licença foi desenvolvida para facilitar o acesso aberto - ou seja, o acesso livre, imediato, e a reutilização irrestrita de trabalhos originais de todos os tipos. Nossos autores mantêm os direitos autorais mas, sob essa licença, concordam em deixar os artigos legalmente disponíveis para reutilização, sem necessidade de permissão ou taxas, para praticamente qualquer finalidade. Qualquer pessoa pode copiar, distribuir ou reutilizar esses artigos, desde que o autor e a fonte original (Políticas Culturais em Revista) sejam devidamente citados.