Chromobacterium subtsugae: bioactive metabolites and applications in sustainable agriculture - a systematic review

Authors

Keywords:

insecticide, bioinputs, biological control, chromamide A, violacein

Abstract

The agricultural bioinput market plays a crucial role in crop production, once these technologies can ensure resilience in crop systems and reduce the anthropogenic impacts on the planet. In this study, a systematic review was conducted to assess the potential of Chromobacterium subtsugae for agriculture, evaluating its genetic and functional apparatus associated with its roles in the agricultural sector. Searches were performed in databases following the PRISMA protocol and screening was conducted based on eligibility criteria for studies published between 2007 and 2024. The searches identified 3,896 references, of which 25 were included. One patent was added to the review, totaling 26 references. These studies reveal the synthesis of violacein, hydrogen cyanide, chitinases and toxins by strains of this species. Unexplored mechanisms in the species were highlighted in this study, such as siderophore production associated with plant growth promotion, as well as data on chromamide A, the main metabolite linked to the insecticidal action of the species. Strains of this species exhibit nematocidal, acaricidal, and insecticidal potential against species from the orders Coleoptera, Hemiptera, Diptera, and Lepidoptera. These findings establish the species or its strains as a viable tool for the agricultural sector, which is capable of contributing to food security and global sustainability

Downloads

Download data is not yet available.

Author Biographies

Vinícius de Souza, Universidade do Estado da Bahia/Departamento de Educação Campus VIII

Biological Sciences undergraduate student at the State University of Bahia (UNEB). Technological Initiation Scholarship holder from the National Council for Scientific and Technological Development (CNPq). Member of the Study Group on Ecology and Microbial Biotechnology of the Semi-Arid Region (GEBIMS). Develops research activities in the fields of microbiology and biotechnology, with emphasis on microbial biotechnology, prospecting of microorganisms of agroindustrial interest, as well as microbial bioinformatics and genomics, integrating biochemical, molecular, and computational approaches for the development of microorganism-based agricultural technologies.

Adailson Feitoza de Jesus Santos, Universidade do Estado da Bahia

Ph.D. in Biotechnology from the State University of Feira de Santana. Master’s degree in Agricultural Microbiology from the Federal University of Recôncavo da Bahia (2010). Specialist in Cell Biology from the State University of Feira de Santana (2008/2009). Bachelor's degree in Biology from the State University of Bahia (2007). Has worked in the field of Microbiology with bioremediation of soils contaminated by petroleum and its derivatives. Currently coordinates the Laboratory of Ecology and Microbial Biotechnology of the Semi-Arid Region (LEBIMS) at UNEB, where he conducts research with microorganisms isolated from the Caatinga biome with potential for mitigating the effects of climate change, as well as for crop protection and plant growth promotion.

References

AJIJAH, N.; FIODOR, A., PANDEY, A. K.; RANA, A.; PRANAW, K. Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity, v. 15, n. 1, p. 112, 2023. https://doi.org/10.3390/d15010112

ASOLKAR, R.; HUANG, H.; KOIVUNEN, M.; MARRONE, P. Chromamide A (1), compositions comprising chromamide A (1) with insecticidal activity. Depositante: Marrone Bio Innovations, Inc. EP n. 2632272B1. Depósito: 24 out. 2011. Concessão: 21 ago. 2019.

AYAN, L. B.; COUTIÑO, P. M.; GONZÁLEZ, M. M.; VÁZQUEZ, R. L.; HERNÁNDEZ, F. G. Microorganismos del suelo y sus usos potenciales en la agricultura frente al escenario del cambio climático. Magna Scientia UCEVA, v. 1, n. 1, p. 104-117, 2021. DOI: : https://doi.org/10.54502/msuceva.v1n1a14

BAJSA, N.; FABIANO, E.; RIVAS-FRANCO, F. Biological control of phytopathogens and insect pests in agriculture: an overview of 25 years of research in Uruguay. Environmental Sustainability, v.6, n.2, p.121-133. 2023. DOI: https://doi.org/10.1007/s42398-023-00275-8

BALUSU, R. R.; FADAMIRO, H. Y. Evaluation of organically acceptable insecticides as stand?alone treatments and in rotation for managing yellowmargined leaf beetle, Microtheca ochroloma (Coleoptera: Chrysomelidae), in organic crucifer production. Pest management science, v.68, n.4, p.573-579. 2012. DOI: https://doi.org/10.1002/ps.2297

BALUSU, R.; FADAMIRO, H. Y. Susceptibility of Microtheca ochroloma (Coleoptera: Chrysomelidae) to botanical and microbial insecticide formulations. Florida Entomologist, v.96, n.3, p.914-921. 2013. DOI: https://doi.org/10.1653/024.096.0327

BLACKBURN, M. B.; SPARKS, M. E.; GUNDERSEN-RINDAL, D. E. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472. Genomics data, v.10, n.1, p.1-3. 2016. DOI: https://doi.org/10.1016/j.gdata.2016.08.013

CALVIN, W.; BEUZELIN, J. M.; LIBURD, O. E.; BRANHAM, M. A.; SIMON, L. J. Effects of biological insecticides on the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), in sorghum. Crop Protection, v.142, n.1, p.105528. 2021. DOI: https://doi.org/10.1016/j.cropro.2020.105528

CLARK, M. M.; BRODERICK, N. A. Whole-genome sequencing of Chromobacterium subtsugae strains exhibiting toxicity to Drosophila melanogaster. Microbiology Resource Announcements, v.13, n.6, p.e00127-24. 2024. DOI: https://doi.org/10.1128/mra.00127-24

DIAS, K. C. F. P.; DA SILVA SOUZA, I. J.; BARROS, Y. C.; DA SILVA, E. P.; LEITE, J.; FEITOZA, A. F. A.; DE JESUS SANTOS, A. F. Native bacteria from the caatinga biome mitigate the effects of drought on melon (Cucumis melo L.). Comunicata Scientiae, v. 15, p. e4072-e4072, 2024. DOI: https://doi.org/10.14295/cs.v15.4072

FANNING, P. D.; GRIESHOP, M. J.; ISAACS, R. Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. Journal of Applied Entomology, v.142, n.1, p.26-32. 2018. DOI: https://doi.org/10.1111/jen.12462

GOLEC, J. R.; HOGE, B.; WALGENBACH, J. F. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop Protection, v.128, n.1., p.105015. 2020. DOI: https://doi.org/10.1016/j.cropro.2019.105015

GYAWALI, P.; KIM, H.; VANCE, D. R.; KHODAVERDI, H.; MANTRI, A.; NANSEN, C. Can Insects Assess Environmental Risk? Movement Responses and Nymph Emergence in Response to Insecticides. Agriculture, v.13, n.3, p.723. 2023. DOI: https://doi.org/10.3390/agriculture13030723

HOWLAND, A. D.; COLE, E.; POLEY, K.; QUINTANILLA, M. Alternative Management Strategies and Impact of the Northern Root-Knot Nematode in Daylily Production. Plant Health Progress, v.24, n.2, p.180-187. 2023. DOI: https://doi.org/10.1094/PHP-08-22-0076-RS

LEE, D. H.; SHORT, B. D.; NIELSEN, A. L.; LESKEY, T. C. Impact of organic insecticides on the survivorship and mobility of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in the laboratory. Florida Entomologist, v.97. n.2, p.414-421. 2014. DOI: https://doi.org/10.1653/024.097.0211

LOO, C.; KOIRALA, P.; SMITH, N. C.; EVANS, K. C., BENOMAR, S.; PARISI, I. R.; OLLER, A.; CHANDLER, J. R. Cross-species activation of hydrogen cyanide production by a promiscuous quorum-sensing receptor promotes Chromobacterium subtsugae competition in a dual-species model. Microbiology, v.169, n.2, p.001294. 2023. DOI: https://doi.org/10.1099/mic.0.001294

MAL, S.; PANCHAL, S. Drought and salt stress mitigation in crop plants using stress-tolerant auxin-producing endophytic bacteria: a futuristic approach towards sustainable agriculture. Frontiers in Plant Science, v. 15, p. 1422504, 2024. DOI: https://doi.org/10.3389/fpls.2024.1422504

MARTIN, P. A. W.; BLACKBURN, M. B. Characterization of the insecticidal activity of Chromobacterium subtsugae. Biopesticides International, v.4, n.2, p.102-109. 2008. DOI:

MARTIN, P. A.; GUNDERSEN-RINDAL, D.; BLACKBURN, M., BUYER, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, v.57, n.5, p.993-999. 2007a. DOI: https://doi.org/10.1099/ijs.0.64611-0

MARTIN, P. A.; HIROSE, E.; ALDRICH, J. R. Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, v.100. n.3, p.680-684. 2007b. DOI: https://doi.org/10.1093/jee/100.3.680

MERMER, S.; TAIT, G.; PFAB, F.; MIRANDOLA, E.; BOZARIC, A.; THOMAS, C. D.; MOELLER, M., OPPENHEIMER, K. G.; XUE, L.; WANG, L.; WALTON, V. M. Comparative insecticide application techniques (micro-sprinkler) against Drosophila suzukii Matsumura (Diptera: Drosophilidae) in highbush blueberry. Environmental entomology, v.51, n.2, p.413-420. 2022 DOI: https://doi.org/10.1093/ee/nvac002

OLIVEIRA-HOFMAN, C.; COTTRELL, T. E.; BOCK, C.; MIZELL III, R. F.; WELLS, L.; SHAPIRO-ILAN, D. I. Impact of a biorational pesticide on the pecan aphid complex and its natural enemies. Biological Control, v.161, n.1, p.104709. 2021. DOI: https://doi.org/10.1016/j.biocontrol.2021.104709

OUZZANI, M.; HAMMADY, H.; FEDOROWICZ, Z.; ELMAGARMID, A. Rayyan—a web and mobile app for systematic reviews. Systematic reviews, v.5, n.1, p.1-10. 2016. DOI: https://doi.org/10.1186/s13643-016-0384-4

PAGE, M. J.; MCKENZIE, J. E.; BOSSUYT, P. M.; BOUTRON, I.; HOFFMANN, T. C.; MULROW, C. D., SHAMSEER, L.; TETZLAFF, J. M.; AKL, E. A.; BRENNAN, S. E.; CHOU, R.; GLANVILLE, J.; GRIMSHAW, J. M.; HRÓBJARTSSON, A.; LALU, M. M.; LI, T.; LODER, E. W.; MAYO-WILSON, E.; MCDONALD, S.; MCGUINNESS, L. A.; STEWART, L. A.; THOMAS, L.; TRICCO, A. C.; WELCH, V. A.; WHITING, P.; MOHER, D.. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, v.372, n.72. 2021. DOI: https://doi.org/10.1186/s13643-016-0384-4

PATHMUDI, V. R.; KHATRI, N.; KUMAR, S.; ABDUL-QAWY, A. S. H.; VYAS, A. K. A systematic review of IoT technologies and their constituents for smart and sustainable agriculture applications. Scientific African, v.19, n.1, p.e01577. 2023. DOI: https://doi.org/10.1016/j.sciaf.2023.e01577

POVEDA, J.; EUGUI, D.. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biological Control, v. 176, p. 105100, 2022.

RAY, H. A.; HOY, M. A. Effects of reduced-risk insecticides on three orchid pests and two predacious natural enemies. Florida Entomologist, v.97, n.3, p.972-978. 2014. DOI: https://doi.org/10.1653/024.097.0355

ROCHA, T. M.; MARCELINO, P. R. F.; DA COSTA, R. A. M.; RUBIO-RIBEAUX, D.; BARBOSA, F. G.; DA SILVA, S. S. Agricultural Bioinputs Obtained by Solid-State Fermentation: From Production in Biorefineries to Sustainable Agriculture. Sustainability, v.16, n.3, p.1076. 2024. DOI: https://doi.org/10.3390/su16031076

ROGERS, M. A.; OWNLEY, B. H.; AVERY, P. B.; WSZELAKI, A. L. Toxicity and efficacy of novel biopesticides for organic management of cucumber beetles on Galia muskmelons. Organic Agriculture, v.7, n.1, p.365-377. 2017. DOI: https://doi.org/10.1007/s13165-016-0161-7

SARMIENTO, L.; VITERI, D. M.; LINARES, A. M.; CABRERA, I. Bio-ensayos de insecticidas biológicos y orgánicos sintéticos en larvas del gusano de la mazorca del maíz [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)]. J. Agric. Univ. PR, v.105, n.1. 2021. DOI: https://doi.org/10.46429/jaupr.v105i2.20081

SEPPELT, R.; KLOTZ, S.; PEITER, E.; VOLK, M. Agriculture and food security under a changing climate: An underestimated challenge. Iscience, v.25, n.12, p.105551. 2022. DOI: https://doi.org/10.1016/j.isci.2022.105551

SHANNAG, H. K.; CAPINERA, J. L. Comparative effects of two novel betaproteobacteria based insecticides on Myzus persicae (Hemiptera: Aphididae) and Phenacoccus madeirensis (Hemiptera: Pseudococcidae). Florida Entomologist, v.101, n.2, p.212-218. 2018. DOI: https://doi.org/10.1653/024.101.0209

SHAPIRO-ILAN, D. I.; COTTRELL, T. E.; BOCK, C.; MAI, K.; BOYKIN, D.; WELLS, L.; HUDSON, W. G; MIZELL III, R. F. Control of pecan weevil with microbial biopesticides. Environmental entomology, v.46, n.6, p.1299-1304. 2017. DOI: https://doi.org/10.1093/ee/nvx144

SHAPIRO–ILAN, D. I.; COTTRELL, T. E.; JACKSON, M. A.; WOOD, B. W. Control of key pecan insect pests using biorational pesticides. Journal of Economic Entomology, v.106, n.1, p.257-266. 2013. DOI: https://doi.org/10.1603/ec12302

SIAL, A. A.; ROUBOS, C. R.; GAUTAM, B. K.; FANNING, P. D.; VAN TIMMEREN, S.; SPIES, J.; PETRAN, A.; ROGERS, M. A.; LIBURD, O. E.; LITTLE, B. A.; CURRY, S.; ISAACS, R. Evaluation of organic insecticides for management of spotted?wing drosophila (Drosophila suzukii) in berry crops. Journal of applied entomology, v.143, n.6, p.593-608. 2019. DOI: https://doi.org/10.1111/jen.12629

VÖING, K.; HARRISON, A., SOBY, S. D. Draft genome sequences of three Chromobacterium subtsugae isolates from wild and cultivated cranberry bogs in southeastern Massachusetts. Genome Announcements, v.3, n.5, p. e00998-15. 2015. DOI: https://doi.org/10.1128/genomeA.00998-15

VÖING, K.; HARRISON, A.; SOBY, S. D. Draft genome sequence of Chromobacterium subtsugae MWU12-2387 isolated from a wild cranberry bog in Truro, Massachusetts. Genome announcements, v.5, n.12, p. e01633-16. 2017. DOI: https://doi.org/10.1128/genomea.01633-16

Published

2025-12-26

How to Cite

de Souza, V., & Feitoza de Jesus Santos, A. (2025). Chromobacterium subtsugae: bioactive metabolites and applications in sustainable agriculture - a systematic review. Geama Journal - Environmental Sciences, 11(3), 4–13. Retrieved from https://journals.ufrpe.br/index.php/geama/article/view/7755

Issue

Section

REVISÃO DE LITERATURA