Expression of RONIN and NANOG-associated proteins in goat parthenogenetic embryos

Autores/as

  • Marcelo Tigre Moura Universidade Federal Rural de Pernambuco (UFRPE)
  • Pamela Ramos-Deus Universidade Federal Rural de Pernambuco (UFRPE)
  • José Carlos Ferreira-Silva Universidade Federal Rural de Pernambuco (UFRPE)
  • Priscila Germany Corrêa Silva Universidade Federal Rural de Pernambuco (UFRPE)
  • Ludymila Furtado Cantanhêde Universidade Federal Rural de Pernambuco (UFRPE)
  • Pábola Santos Nascimento Universidade Federal Rural de Pernambuco (UFRPE)
  • Roberta Lane Oliveira Silva Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Brasil.
  • Ana Maria Benko-Iseppon Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Brasil.
  • Marcos Antonio Lemos Oliveira Universidade Federal Rural de Pernambuco (UFRPE)

DOI:

https://doi.org/10.26605/medvet-n2-1747

Palabras clave:

Capra hircus, caprine, embryogenesis, RT-PCR, RT-qPCR, mRNA.

Resumen

The expression of a subset of transcription factors is enriched in early preimplantation embryos, which contributes to their cellular plasticity. RONIN, NANOG and its associated proteins are PluripotencyAssociated Transcription Factors (PATF) that control relevant downstream pathways in pluripotent stem cells, but their activity in early embryos remained less understood. The work was aimed to determine the expression of RONIN and four NANOG-associated PATFs in goat preimplantation embryos. Goat embryos were produced in vitro by parthenogenetic activation. Gene transcripts of cleavage-stage embryos were investigated by reverse transcriptase-polymerase chain reaction (RT-PCR), while blastocysts were analyzed by both RTPCR and quantitative RT-PCR (RT-qPCR) assays. Gene transcripts of ZFP281, NAC1, and NR0B1 were detected in cleavage-stage embryos, while RONIN and OCT4 were not found expressed. Detection in blastocysts by RT-PCR confirmed the activity of NR0B1, RONIN, and OCT4. Moreover, all five PATF were detected in blastocysts by RT-qPCR (ZFP281, NAC1, RONIN, OCT4, and NR0B1). In conclusion, RONIN and NANOG-associated proteins are active during goat parthenogenetic preimplantation development and hold stage-specific expression patterns.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Boroviak, T.; Nichols J. The birth of embryonic pluripotency. Philosophical transactions of the Royal Society of London. Series B, 369(1657): 1-10, 2014.

Boyer, L.A.; Lee, T.I.; Cole, M.F.; Johnstone, S.E.; Levine, S.S.; Zucker, J.P.; Guenther, M.G.; Kumar, R.M.; Murray, H.L.; Jenner, R.G.; Gifford, D.K.; Melton, D.A.; Jaenisch, R.; Young, R.A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6): 947-956, 2005.

Chambers, I.; Colby, D.; Robertson, M.; Nichols, J.; Lee, S.; Tweedie, S.; Smith, A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113(5): 643-655, 2003.

Chambers, I.; Tomlinson, S.R. The transcriptional foundation of pluripotency. Development, 136(14): 2311-2322, 2009.

Conceição, J.C.; Moura, M.T.; Ferreira-Silva, J.C.; Cantanhêde, L.F.; Chaves, R.M.; Lima, P.F.; Oliveira, M.A. Incidence of apoptosis after retinoids and insulin-like growth factorI (IGF-I) supplementation during goat in vitro embryo production. Zygote, 24(6): 808-813, 2016.

Dejosez, M.; Krumenacker, J.S.; Zitur, L.J.; Passer, M.; Chu, L.F.; Songyang, Z.; Thomson, J.A.; Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 133(7): 1162-1174, 2008.

Dejosez, M.; Levine, S.S.; Frampton, G.M.; Whyte, W.A.; Stratton, S.A.; Barton, M.C.; Gunaratne, P.H.; Young, R.A.; Zwaka, T.P. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes and Development, 24(14): 1479-1484, 2010.

Dominko, T.; Mitalipova, M.; Haley, B.; Beyhan, Z.; Memili, E.; McKusick, B.; First, N.L. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biology of Reproduction, 60(6): 1496-1502, 1999. Ferreira-Silva, J.C.; Moura, M.T.; Silva, T.D.; Oliveira, L.R.; Chiamenti, A.; Figueirêdo Freitas, V.J.; Oliveira, M.A. Full-term potential of goat in vitro produced embryos after different cryopreservation methods. Cryobiology, 75(X): 75-79, 2017.

Frankenberg, S.R.; de Barros, F.R.; Rossant, J.; Renfree, M.B. The mammalian blastocyst. Wiley Interdisciplinary Reviews: Developmental Biology, 5(2): 210-232, 2016.

Gervais, V.; Campagne, S.; Durand, J.; Muller, I.; Milon, A. NMR studies of a new family of DNA binding proteins: the THAP proteins. Journal of Biomolecular NMR, 56(1): 3-15, 2013.

Goissis, M.D.; Cibelli, J.B. Functional characterization of SOX2 in bovine preimplantation embryos. Biology of Reproduction, v.90, Artigo 30, 2014. Loh, Y.H.; Wu, Q.; Chew, J.L.; Vega, V.B.; Zhang, W.; Chen, X.; Bourque, G.; George, J.; Leong, B.; Liu, J.; Wong, K.Y.; Sung, K.W.; Lee, C.W.; Zhao, X.D.; Chiu, K.P.; Lipovich, L.; Kuznetsov, V.A.; Robson, P.; Stanton, L.W.; Wei, C.L.; Ruan, Y.; Lim, B.; Ng, H.H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4): 431-440, 2006.

He, S.; Pant, D.; Schiffmacher, A.; Bischoff, S.; Melican, D.; Gavin, W.; Keefer, C. Developmental expression of pluripotency determining factors in caprine embryos: novel pattern of NANOG protein localization

in the nucleolus. Molecular Reproduction and Development, 73(12): 1512-1522, 2006.

HosseinNia, P.; Hajian, M.; Tahmoorespur, M.; Hosseini, S.M.; Ostadhosseini, S.; Nasiri, M.R.; Nasr-Esfahani, M.H. Expression Profile of Developmentally Important Genes in preand peri-Implantation Goat Embryos Produced In Vitro. International Journal of Fertility & Sterility, 10(3): 310-319, 2016.

Hung, J.H.; Weng, Z. Designing Polymerase Chain Reaction Primers Using Primer3Plus. Cold Spring Harbor Protocols, 2016(9): artigo pdb.prot093096, 2016.

Kim, J.; Chu, J.; Shen, X.; Wang, J.; Orkin, S.H. 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049-1061, 2008.

Malik, H.N.; Singhal, D.K.; Saugandhika, S.; Dubey, A.; Mukherjee, A.; Singhal, R.; Kumar, S.; Kaushik, J.K.; Mohanty, A.K.; Das, B.C.; Bag, S.; Bhanja, S.K.; Malakar, D. Generation of parthenogenetic goat blastocysts: effects of different activation methods and culture media. Zygote, 23(3): 327-335, 2015.

Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113(5): 631-642, 2003.

Moura, M.T.; Sousa, R.V.; Oliveira Leme, L.; Rumpf, R. Analysis of actinomycin D treated cattle oocytes and their use for somatic cell nuclear transfer. Animal Reproduction Science, 109(1-4): 40-49, 2008.

Moura, M.T. Pluripotency and cellular reprogramming. Anais da Academia Pernambucana de Ciência Agronômica, 8(1): 138-168, 2012.

Onichtchouk, D.; Driever, W. Zygotic Genome Activators, Developmental Timing, and Pluripotency. Current Topics in Developmental Biology, 116: 273-297, 2016.

Pesce, M.; Schöler, H.R. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells, 19(4): 271-278, 2001.

Purpera, M.N.; Giraldo, A.M.; Ballard, C.B.; Hylan, D.; Godke, R.A.; Bondioli, K.R. Effects of culture medium and protein supplementation on mRNA expression of in vitro produced bovine embryos. Molecular Reproduction and Development, 76(8): 783-793, 2009.

Rossant, J. Developmental biology: A mouse is not a cow. Nature, 471(7339): 457-458, 2011.

Silva, P.G.C.; Moura, M.T.; Braga, V.A.A.; Ferreira-Silva, J.C.; Nascimento, P.S.; Cantanhêde, L.F.; Chaves, M.S.; Oliveira, M.A.L. 2017.

Atividade dos genes relacionados à pluripotência em ovinos. Medicina Veterinária (UFRPE), 11(1): 000, 2017. Vastenhouw, N.L.; Schier, A.F. Bivalent histone modifications in early embryogenesis. Current Opinion in Cell Biology, 24(3): 374-386, 2012.

Wang, J.; Rao, S.; Chu, J.; Shen, X.; Levasseur, D.N.; Theunissen, T.W.; Orkin, S.H. 2006. A protein interaction network for pluripotency of embryonic stem cells. Nature, 444(7117): 364-368, 2006.

Yates, A.; Chambers, I. The homeodomain protein Nanog and pluripotency in mouse embryonic stem cells. Biochemical Society Transactions, 33(6): 1518-1521, 2005.

Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 18 (13): artigo 134, 2012.

Yeo, J.C.; Ng, H.H. The transcriptional regulation of pluripotency. Cell Research, 23(1): 20-32, 2013. Young, R.A. Control of the embryonic stem cell state. Cell, 144(6): 940-954, 2011.

Publicado

2017-12-13

Cómo citar

Moura, M. T., Ramos-Deus, P., Ferreira-Silva, J. C., Corrêa Silva, P. G., Cantanhêde, L. F., Nascimento, P. S., Silva, R. L. O., Benko-Iseppon, A. M., & Oliveira, M. A. L. (2017). Expression of RONIN and NANOG-associated proteins in goat parthenogenetic embryos. Medicina Veterinária, 11(2), 145–152. https://doi.org/10.26605/medvet-n2-1747

Número

Sección

Reprodução Animal