Metafilaxia com disseleneto de difenila em bezerras de corte submetidas ao desmame precoce

Autores/as

DOI:

https://doi.org/10.26605/medvet-v18n1-6263

Palabras clave:

antioxidante, bovino, estresse oxidativo

Resumen

Objetivou-se avaliar o efeito metafilático do disseleneto de difenila no desempenho, perfil metabólico e status oxidativo de bezerras de corte submetidas ao desmame precoce. Foram utilizadas 30 bezerras taurinas de corte, filhas de vacas primíparas, entre 60 a 110 dias de vida. As bezerras foram distribuídas de forma randomizada em três grupos experimentais. Grupo controle (GC, n=10): 2 mL de solução de NaCl a 0,9%. Grupo dimetilsulfóxido (GDMSO, n=10): 2 mL de dimetilsulfóxido a 99,2%. Grupo disseleneto de difenila (GDD, n=10): 3 µmol/kg de (PhSe)2 a 98%, diluído em 2 mL de dimetilsulfóxido 99,2%. O intervalo entre dias considerado como momentos (M), foi de 14 dias, e a avaliação de peso e coleta de amostras de sangue ocorreu no M1=basal (-28 dias), M2 (-14 dias), M3 (dia 0), M4 (14 dias) e M5 (28 dias), já as administrações dos tratamentos no M1, M2, M3. Houve efeito significativo para momento: ganho médio diário (P<0,0001), proteína total (P<0,0001), globulina (GL) (P<0,0001), glutationa reduzida (P=0,0263), substâncias reativas ao ácido tiobarbitúrio (P<0,0001) e potencial antioxidante redutor férrico (P<0,0001), exceto para albumina (P=0,1374). A suplementação com disseleneto de difenila em bezerras de corte desmamadas precocemente não preveniu a alteração de parâmetros oxidativos sanguíneos, sugerindo a ocorrência de estresse oxidativo. Porém, no grupo tratado com disseleneto de difenila houve incremento no ganho de peso, proteína total e globulina, propondo que o uso deste antioxidante em momentos estratégicos pode sim condicionar os animais, promover bem estar e reduzir os efeitos deletérios causados pelo desmame, como a perda de peso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ABIEC. Associação Brasileira das Indústrias Exportadoras de Carnes. Beef Report-Perfil da pecuária no Brasil. p. 1-14, 2023. Disponível em: <https://www.abiec.com.br/wp-content/uploads/Final-Beef-Report-2023-Cap03.pdf>. Acesso: 16 jun. 23.

Allen, C.C. et al. Interaction of dietary energy source and body weight gain during the juvenile period on metabolic endocrine status and age at puberty in beef heifers. Journal of Animal Science, 95(5): 2080-2088, 2017.

Barcellos, J.O.J. et al. Bovinocultura de corte: cadeia produtiva e sistemas de produção. 2a ed. Guaíba: Agrolivros, 2019. 304p.

Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1): 70-76, 1996.

Biazus, A.H. et al. Diphenyl diselenide subcutaneous supplementation of dairy sheep: effects on oxidant and antioxidant status, inflammatory response and milk composition. Animal Production Science, 59(3): 461-470, 2018.

Carroll, J.A. et al. Early weaning alters the acute-phase reaction to an endotoxin challenge in beef calves. Journal of Animal Science, 87 (12): 4167-4172, 2009.

Cattelam, J. Desmame precoce na produção de bovinos de corte. Revista de Ciências Agroveterinárias, 13(2): 190-198, 2014.

Ceciliani, F. et al. Acute phase proteins in ruminants. Journal of Proteomics, 75(14): 4207-4231, 2012.

Chirase, N.K. et al. Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research, 65(6): 860-864, 2004.

Cody, R. An introduction to SAS university edition. SAS Institute, 2015.

Combs Jr, G.F. Biomarkers of selenium status. Nutrients, 7(4): 2209-2236, 2015.

Dröge, W. et al. Functions of glutathione and glutathione disulfide in immunology and immunopathology. The FASEB Journal, 8(14): 1131-1138, 1994.

Eitam, H. et al. Differential stress responses among newly received calves: variations in reductant capacity and Hsp gene expression. Cell Stress and Chaperones, 15(6): 865-876, 2010.

Ellman, G.L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1): 70-77, 1959.

Enríquez, D. et al. Minimising the stress of weaning of beef calves: a review. Acta Veterinaria Scandinavica, 53(1): 1-8, 2011. doi: https://doi.org/10.1186/1751-0147-53-28

Ganie, A.A. et al. Effect of selenium supplementation on growth and nutrient utilization in buffalo heifers. Animal Nutrition and Feed Technology, 10(2): 255-259, 2010.

Georgieva, N.V. Oxidative stress as a factor of disrupted ecological oxidative balance in biological systems a review. Bulgarian Journal of Veterinary Medicine, 8(1): 1-11, 2005.

Ghiselli, A. et al. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine, 29(11): 1106-1114, 2000.

González, F.H.D.; Silva, S.C. Introdução à bioquímica clínica veterinária. 3ª ed. Porto Alegre: Editora da UFRGS, 2017. 538p.

Gottshall, C.S. Desmame de bezerros de corte. Como? Quando? Por quê? 2.ed. Guaíba: Agrolivros, 2009. 135p.

Grings, E.E. et al. Calving system and weaning age effects on cow and preweaning calf performance in the Northern Great Plains. Journal of Animal Science, 83(11): 2671-2683, 2005.

Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, Oxford: University Press, 1989. 944p.

Hickey, M.C. et al. The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. Journal of Animal Science, 81(11): 2847-2855, 2003.

Inanami, O. et al. Lipid peroxides and antioxidants in serum of neonatal calves. American Journal of Veterinary Research, 60(4): 452-457, 1999.

Leal, M.L.R. et al. Distribution of selenium in sheep treated with dipheny diselenide. Brazilian Archive of Veterinary Medicine and Animal Science, 70(4): 1017-1022, 2018.

Lynch, E. et al. Weaning management of beef calves with implications for animal health and welfare. Journal of Applied Animal Research. 47(1): 167-175, 2019.

Lobanov, A.V. et al. Eukaryotic selenoproteins and selenoproteomes. Biochimica et Biophysica Acta, 1790(11): 1424–1428, 2009.

Mehdi, Y.; Dufrasne, I. Selenium in cattle: a review. Molecules, 21(4): 1-14, 2016.

Meotti, F.C. et al. Protective role of aryl and alkyl diselenides on lipid peroxidation. Environmental Research, 94(3): 276-282, 2004.

Miller, J.K. et al. Oxidative stress, antioxidants, and animal function. Journal of Dairy Science, 76(9): 2812-2823, 1993.

Nogueira, C.W. et al. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chemical Reviews, 104(12): 6255-6286, 2004.

Nogueira, C.W.; Rocha, J.B.T. Diphenyl diselenide a janus-faced molecule. Journal of the Brazilian Chemical Society, 21(11): 2055-2071, 2010.

NAS. National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle. 8a ed. Washington, D.C.: The National Academies Press, 2016. 494p.

Oaigen, R.P. et al. Gestão na bovinocultura de corte. 1.ed. Guaíba: Agrolivros, 2015. 176p.

Ohkawa, K. Promotion of Renewal Canes in Greenhouse Roses by 6-Benzylamino purine without Cutback1. HortScience, 14(5): 612-613, 1979.

Oliveira, T.E.D. et al. Risks associated to different methods of increasing pregnancy rate of cows in cow-calf systems. Revista Brasileira de Zootecnia, 47(e): 1-8, 2018.

O'Loughlin, A. et al. Biomarker responses to weaning stress in beef calves. Research in Veterinary Science, 97(2): 458-463, 2014.

Orihuela, A.; Galina, C.S. Effects of separation of cows and calves on reproductive performance and animal welfare in tropical beef cattle. Animals, 9(5): 1-13, 2019.

Orlandi, T. et al. Acacia mearnsii tannin extract as a feed additive: impact on feed intake, digestibility and nitrogen excretion by sheep fed a tropical grass-based diet. Ciência Rural, 50(9): 1-6, 2020.

Pérez-Torres, L. et al. Effects of separation time on behavioral and physiological characteristics of Brahman cows and their calves. Applied Animal Behaviour Science, 179: 17-22, 2016.

Prauchner, C.A. A importância do selênio para a agropecuária e saúde humana. 1a ed. Santa Maria: Editora da UFSM, 2014. 376p.

Pregel, P. et al. Antioxidant capacity as a reliable marker of stress in dairy calves transported by road. Veterinary Record, 156(2): 53-54, 2005.

Ribeiro, S.M.R. et al. A formação e os efeitos das espécies reativas de oxigênio no meio biológico. Bioscience Journal, 21(3): 133-149, 2005.

Rodrigues, C.M. et al. Does diphenyl diselenide metaphylaxis increase weight gain and immunoglobulin G in Holstein calves from the neonatal period to weaning? Agrarian Academic Journal, 3(3): 49-61, 2020.

Rooke, J.A. et al. Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. The Journal of Agricultural Science, 142(3): 253–262, 2004.

Russell, J.R. et al. Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers. Journal of Animal Science, 94(7): 2942-2953, 2016.

Santos, D.S. et al. Health benefits of subcutaneous zinc edetate and diphenyl diselenide in calves during the weaning period. Annals of the Brazilian Academy of Sciences, 91(1): 1-12, 2019.

Schrauzer, G.N. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition, 130(7): 1653-1656, 2000.

Sousa, I.K. et al. Influence of organic chromium supplementation on the performance of beef calves undergoing weaning-related stress. Pesquisa Veterinária Brasileira, 40(2): 97-101, 2020.

Suttle, N.F. Mineral nutrition of livestock. 4a ed. London: Cabi Publishing, 2010. 587p.

Taylor, J.D. et al. Comparison of effects of four weaning methods on health and performance of beef calves. Animal, 14(1): 161-170, 2020.

Team, R.C. et al. R: A language and environment for statistical computing, 2013.

Vasconcelos, S.M.L. et al. Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova, 30(5): 1323-1338, 2007.

Vaz, R.Z. et al. Analysis of economic efficiency of breeding systems with different weaning ages of calves. Bioscience Journal, 30(6): 1837-1845, 2014.

Wang, C. et al. Weaning performance of beef cattle calves based on concentrate intake. Animals, 10(1): 1-12, 2019.

Weary, D.M. et al. Understanding weaning distress. Applied Animal Behaviour Science, 110(1-2): 24-41, 2008.

Wickham, H. GGPLOT2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2): 180-185, 2011.

Zhang, K. et al. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs. Biological Trace Element Research, 196(1): 463-471, 2019.

Publicado

2024-05-23

Cómo citar

Parmeggiani, E. B., Rodrigues, C. M., Bernardi, L. S., Trentin, J. M., Cibin, F. W. S., Prestes, A. M., & Leal, M. L. do R. (2024). Metafilaxia com disseleneto de difenila em bezerras de corte submetidas ao desmame precoce. Medicina Veterinária, 18(1), 55–70. https://doi.org/10.26605/medvet-v18n1-6263

Número

Sección

Produção Animal